Object Oriented Analysis and Design
of a Web-Enabled Auction House

Y. Narahari, K.N. Rajanikanth, and Sourav Sen
FElectronic Enterprises Laboratory
Department of Computer Science and Automation
Indian Institute of Science
Bangalore - 560 012, India

hari, knrajani, sourav@csa.iisc.ernet.in

Abstract

This paper describes the object oriented analysis and design of a web appli-
cation, WHAT (Web-enabled House of Auctions). WHAT is an Internet auction
application that serves a multitude of web clients and conducts multiple auctions
concurrently. We present the steps involved in the conceptualization, analysis, de-
sign, and implementation of this application. UML (Unified Modeling Language)
is the modeling language used in this work. We show how the static, dynamic, and
operational aspects of the system are captured using various UML diagrams. Design
patterns have been used extensively in evolving the analysis model of WHAT into
a design model.

1 Introduction

Object technology is a sound paradigm to economically produce enduring
and resilient industrial-strength software systems [1, 10]. Object oriented
modeling is based on real world concepts and objects lead to an accurate
description of real-world processes.

The unified modeling language (UML) [2, 5] is a visual, highly expres-
sive language for describing the constructs and relationships of a system.
More recently, UML has emerged as a suitable modeling language for web-
based applications [4, 3]. By combining the most useful aspects of object
oriented methods and extending the notation to cover new aspects of sys-
tem development, UML provides a comprehensive notation for the full life
cycle of Object oriented development.

In this paper we describe the use of UML for specification, analysis,
design, construction, and documentation of WHAT, a web application for
Internet auctions.

1.1 WHAT: Web-enabled Auction House

WHAT is a web application for an on-line auction system. Internet auc-
tions have emerged as an important business model for E-commerce and
automated negotiations [8]. Primarily, WHAT is a web server with auction
logic and a backend database, and services a multitude of web clients. It
supports:

e Open Cry Auction : wherein each buyer may know the bid submit-
ted by a competing buyer and can respond to it. When the bidding
phase is over the bidder(s) with the highest bid(s) gets the item.

e Dutch Auction: wherein the seller attaches a high asking price for
the item. Then he gradually decreases the asking price until buyers
emerges with bids specifying how many items they will purchase at
the current asking price.

See the excellent tutorial by Manoj Kumar and Feldman [8] for more details
on these auctioning methods.
WHAT is required to have facilities for:

1. Registration of buyers and sellers.

2. Setting up the auction event: this involves describing the item(s) on
auction and setting up the auction rules:

e type of auction

negotiable parameters in auction

start time of auction

auction closing rules

penalties for defaulting

3. Conducting the bidding process by collecting bids from buyers and
implementing bid control rules

4. Evaluation of bids and closure of auction

WHAT only matches buyers and sellers through auctions. It does not
take care of payment or trade settlement; however, it makes provisions
for those. WHAT should have support for defining of "new” auctioning
mechanisms and algorithms and deployment of agents.

1.2 Software Process

The Rational Unified Process (RUP) [7] is the recommended software pro-
cess for object oriented product development. In developing WHAT, we
have followed RUP in spirit. The following core workflows were used in
the process.

1. Requirements Analysis to come up with all important use cases,
their descriptions, and and use-case diagrams.

2. Domain Analysis to discover all important abstractions for the prob-
lem domain (classes, interfaces, collaborations, and relationships). De-
velop all relevant structural and behavioural models (UML structural
diagrams and UML behavioral diagrams).

3. Design: This will involve architectural design and detailed design.
Issues to be addressed here are: GUI design; database design; and
need for technical classes. Design patterns [6, 9] can be used here to
maximum effect.

4. Implementation and Testing: Some issues to look for here are web
enabling and concurrency of transactions.

UML was used extensively in all the above workflows above in an iterative
way.

1.3 Outline

This paper is organized as follows. Section 2 details object oriented analysis
of WHAT, covering both use-case analysis and domain analysis. We begin
by outlining the requirements. Use cases and use case diagrams capture
the requirements precisely. Domain analysis which involves defining object
structure and behavior is presented next using UML class, sequence and
statechart diagrams. Section 3 describes the object oriented design of the
application. Design consists of architectural, mechanistic, and detailed
design. The overall architecture of the system is described. UML diagrams
are presented for identifying the key strategies during the organization of
the system. Section 4 is exclusively devoted to mechanistic design centred
around the discovery and use of patterns of object collaboration. Section 5
provides some implementation details and presents a component diagram
and a deployment diagram for WHAT. Finally Section 6 provides directions
for future work and research.

2 Object Oriented Analysis of WHAT

2.1 Requirements Analysis
The textual requirements specification for WHAT is as follows:

-- Registration of Buyers and sellers: This involves
o Buyers and sellers register into the system before any
meaningful activity with the system.

-- System Login: This involves
o Some way of authenticating the participants.
o Seller login is before any setting
up/canceling/closing/modifying of an auction.
o Buyer login is before bidding / querying an auction.

-- Setting up the auction event: this involves
o Describing the item(s) on auction.
o Setting up the auction rules.
o Setting up the auction type.
0 Setting up Negotiable parameters of the auction.

-- Scheduling of the auction and conducting the bidding process:
this involves

o Automatically starting an auction at the scheduled start
time.
o Implementing the bid control rules.

-- Evaluation of bids and closure of auction: This involves

o Automatically closing an auction at the scheduled stop
time.

o Evaluate bids and notify winners/participants.

o Permit seller to cancel/close auction based on rules.

—-- Query support
o Facilities for obtaining information on auctions/bids

WHAT only matches buyers and sellers through auctions. It does not
take care of the payments or trade settlements. However it makes
provisions for those.

2.1.1 Use Case Analysis

We capture the functionality of the system through the use cases. Firstly
we identify the actors of the system as: Buyers, Sellers, and Auction Mon-
itor.

Secondly we identify the use cases for each of these actors by considering;:

1. Functions the actors requires from the system.
2. Information retrieval /modification in the system (by the actor)

3. Events in the system to which the actor needs to respond / be notified
about.

The use cases identified are: Register, Register Buyer, Register Seller, Log-
in, Log-out, Query, Setup Auction, Setup Opencry auction, Setup Dutch
Auction, Bid, Notify, Cancel Auction, Modify Auction, Close Auction,
and Autoclose Auction. Figure 1 shows a UML use case diagram depicting
the relationships among these usecases. The diagram is self-explanatory.
We provide the descriptions for two use cases: Setup Auction and Cancel
Auction.

REGISTER
REGISTER
BUYER

BUYER
SELLER

SET UP SET UP
OPENCRY AUCTION DUTCH AUCTION

BID IN NA BID IN
OPENCRY AUCTIOI /V
<<lJSES> CANCEL AUCTION
AUCTION <USES>>

<<USES>>
MONITOR MODIFY AUCTION

AUTO CLOSE AUCTION

Figure 1: A use case diagram for WHAT

SETUP AUCTION Use case

e Main Flow

1.
2.
3.

The seller chooses to set up an auction.
The system queries the auction type and product category.

The seller chooses Dutch/Opencry auction and the product cate-
gory.

. The system provides the Dutch/Opencry auction setup page.

5. The seller provides the detailed information and also provides the

6.
7.

auction rules. (E1).
The system checks whether the auction can be hosted. (E2).

The auction is set up.

e Alternate Flows

1.

2.

E1: (1) The input parameters are incorrect. (2) The system
provides the setup page to input the parameters again.

E2: (1) The system checks and finds that resources are not avail-
able to host the auction. (2) System displays a message to the
user that the auction cannot be hosted.

BID Use case

e Main Flow:

1.
2.
3.

4.
J.

The buyer chooses to bid in an opencry/Dutch auction.
The system provides the opencry/Dutch auction bidding page.

The buyer provides the necessary details like bid amount, auction
id, etc.

The system validates the bid . (E1).
A valid bid is registered in the system.

e Alternate flows (E1)

1. The bid is invalid.

2. The system displays a message that an invalid bid has been sub-
mitted and prompts the user to submit a new bid.

2.2 Domain Analysis

2.2.1 Class Diagram

The information gathered during the construction of the use cases was
used to perform object decomposition and build the object structure of
the system.

e Object identification: The key objects identified were: Auction, Bid,
Participant, Rules, Buyer, Auction House, Seller, Product.

e Identification of relationships: It was realized that the relationships
between major classes may be classified as follows:

— Buyer and seller both are kind of participants. Dutch bid and
open cry bid are kind of bids. Dutch rules and opencry rules are
kind of rules. So these fall into the category of s a relationship.

— Individual Auctions and Traders are part of auction house. So
they fall into the category of aggregation relationship.

e Identification of object attributes: We used the following strategies to
discover attributes. (1) Information to define the object. (2) informa-
tion the methods of the object act on. (3) Information necessary to
fulfill the responsibilities of the object.

Thus we arrive at the class diagram shown in Figure 2. The basic
structure of this diagram is similar to the one presented in [8].
2.2.2 Sequence Diagram

A scenario is a sequence of events flowing between actors and the system for
some purpose. The order dependent view of how the system is expected

AUCTION-HOUSE
{abstract}

<

isa
0.* 0.*
TRADER 1 <
AUCTION
{abstract}
Auctionld
Rules
Bid
Buyerld
Sellerd BUYER SELLER
Participant
Auction() Name Name
VerifyParticipant() Loginld Loginld
NotifyParticipant() Password Password
X emailld emailld
CreateBid() BuyerlD SellerlD
ValidateBid(rules)
updateAuction() Buyer() Seller()
updateAuction(Bid) VerifyPasswd(passw) VerifyPasswd(passw)
updateAuction(Particip)
updateAuctionStatus()
1
1 0..* 0.*
RULES BID
{abstract} {abstract} PARTICIPANT
Auctionld
Buyerld
Sellerld
Emailld
Winner
OPENCRY_RULES DUTCH_RULES OPENCRY_BID DUTCH_BID
Participant()
ClLosing_Time ClLosing_Time Auctionld Auctionld Participant(Aucid,Buyerld)
Starting_Time Starting_Time Participant_Id Participant_Id Participant(Aucld,Sellerld)
Bid_Increment Price Bid_Amount Bid_Amount Notify(buyerld)
Auction_type Auction_type 3
Caccel_Option Caccel_Option .) Notify(sellerld)
Close_Option Close_Option Bid() Bid()
Bid(amount) Bid(amount)
Rules() Rules()

Rules(attributes)
Modify_Rules()
Verify_cancel()
Verify_close()

Rules(attributes)
Modify_Rules()
Verify_cancel()
Verify_close()

Figure 2: Domain class diagram for WHAT

. . A2: Login confirm
M: Main Page Al: Login Page page : CONTROLLER DB: DATABASE

USER (BUYER/SELLER)
Login Request()

I I
—.
I I

Input (Login Id, Password)

—
|

Verifty Login (Ldgin 1d, Password) !
‘ | Validate Login (Login Id, :
 Password) g

| L0gin OK() ‘

login Confirm() |

Figure 3: Sequence diagram for login use case

to behave when actually used, is captured by sequence diagrams. We
present some of the sequence diagrams pertaining to WHAT (Figures 3
and 4). Figure 3 depicts a sequence diagram that describes the interactions
comprising the login usecase. The sequence of interactions in the cancel
auction usecase is shown in Figure 4. Such sequence diagrams can be
written down for all the use cases.

2.2.3 Statechart Diagram

State chart diagram shows complete behavioral model of an object. The
following state chart diagram shows the various states an auction object
can be in (Figure 5). Many domain objects in WHAT have interesting
state chart diagrams and one can write down these state chart diagrams.

2.2.4 Activity Diagram

We present an activity diagram for placing a bid. Figure 6 shows the
diagram. The diagram has with three swimlanes: the Client, Server and
Backend lanes. This diagram can be used in forward engineering (that is,
producing the code for the activity). As usual, activity diagrams can be
written down for all non-trivial activities in the system.

10

‘ M : Main Page ‘ B1: Cancel Auction Page ‘ B2 : CancelAuctionConfirmPage ‘ Controller ‘ ‘ DB : Database ‘ ‘ Auction ‘ ‘ Rules

\ \ \ \ \ \ \
SELLER '

CancelAuctionRequest() |
CancelAuctionPage() | ‘ | | |

\ \ \
CancelAuction (Auctionid) .

‘ ‘ ‘ ‘ getSellerid (Auctionid P ‘ ‘
\ \ \ \ \

1 verifySellerloggedin(sellerid)

\ \ ‘ \ \

sellerlogininfo

\ \ 1 \ \

| _getAuction (Auctionid
‘ ‘ Auction (Auctionid ‘

‘ ‘ ‘ CancelAud\ion (Auctionid) ‘ ‘

getRules (Auclionig‘) ‘

\
‘ ‘ ‘ \ Rules\ (Auctionid) \
\

‘ Verify_cancel()

CanceIAuctibn (Auctionid) ‘

‘ \ | cancel_confim_|
\ \ ‘ | D updateStatus(cancp)
i

gelPanicipammailid(agcllomd)

‘ ‘ ‘ ‘ notifyParticipant(mailld)
‘ ‘ ‘ Update_Auction(auctionid)

cancelAuction_Confirm

‘ cancelAuction_Confirm ‘

Figure 4: Sequence diagram for cancel auction usecase

11

Creation

getting
auction details

sending

Y

creating bid

auction details

Y

updating
auction info

Y

notifying
participants

Y

confirm bid
to Buyer/seller

I

validating
auction modification

validating

validating
uction cancellation

auction closure

Y

updating
auction information

Notifying
participants

Figure 5: State chart diagram for auction object

12

CLIENT SERVER BACKEND

[Reguest to Bid

[Provide auction bidding page

/

[Provide Bid detials: aucid bid amt j

)
\
T

{ Provide auction rules for auction j

Get auction participants

[validate bid }
- invalid
Bid rejection message
{ Create Bid j\
{ store bid j
[Bid acceptance j
[Update auction T\ -
{ store updated auction data }

{ Provide auction participant data j

|

Notify participants

Figure 6: Activity diagram for placing a bid

13

3 Object Oriented Design

Design is the process of specifying an implementation that is consistent
with the analysis model.

3.1 Architecture Design

A well-designed architecture is the foundation for an extensible and change-
able system In this phase, we come up with a high level design where sub-
systems (packages) are defined, including dependencies and communication
mechanisms between between the packages. In the context of WHAT, we
take into account the following technical implementation issues in the for-
mulation of an architecture:

e We introduce the concept of a consortium of auction houses.

e The consortium handles the issues related to

— Web enabling
— Concurrency control
— Load balancing
e The consortium maintains the following information
— Registry of traders. Traders only communicate with the consor-
tium and have no idea of the auction servers.
— Registry of servers
— Information about individual auction houses
Figure 7 shows a logical view of the architecture comprising web clients,
consortium, auction servers, consortium database, and auction server databases.

We propose a four tier architecture as shown in Figure 8 for the system.
Following are the packages in the proposed architecture:

1. UI Package: Consists of HTML files which enable the user to enter
data and thus interact with the system.

14

AuctionServer
DataBases

Web enabled clients O

AuctionServerl

H > i

Consortium AuctionServer2
| I

| I

|
|
|
|
|
AuctionServer n

Consortium DataBase

Figure 7: Architecture of WHAT

2. Middleware Package: Consists of master servlet which invokes
appropriate threads to handle different requests .The code run in
the threads in turn invokes appropriate local /remote methods. The
communication between local and remote objects are done through
CORBA. Both consortium and the auction servers have databases in-
tegrated with them and the business logic layer both at the consortium
and auction server end uses the services of the database layer.

3. Business Logic Package: Consists of worker classes which imple-
ment the auction logic in part. These package also uses the services
of database package. The classes in these package implement auction
starting and ending and sending mail to various parties at appropriate
points in time using utility package classes. They are also responsible
for maintaining consistency of information at the consortium and the
server end.

4. Database Package: Consists of database initialization, connectivity
and database manipulation components.

5. Utility Package: Consists of utility classes like mail sending and
other specific information gathering classes (Like those that passively
take user statistics).

15

Utility
Package

(Mail Server)

ul
Package

Middleware

i
|
|
|
Package(consortium) \/

Backend logic

Package(AuctionServer& Monitor)

DataBase
Package (MY SQL)

16

Figure 8: A four tier architecture for WHAT

Tierl

Tier2

Tier3

Tier4

4 Design Patterns in WHAT

Design patterns are simple and elegant solutions to specific, commonly
occurring problems in software design [6, 9]. It is well known that design
patterns make it easier to reuse successful designs and architectures of
experienced and professional designers. The following design patterns have

been used in the design of WHAT.

e Abstract Factory: This has been used for generating objects for dif-
ferent auction protocols. Different auction protocols require different
sets of individual objects to be created and used together. The use of
Abstract Factory automatically enforces this constraint.

e Builder: WHAT clients may be presented with different kinds of
web pages (HTML pages, forms, etc.). To separate construction of
different kinds of web pages from representation, the Builder pattern
has been used.

e Bridge: Bridge pattern has been used in several ways:

— Avoid permanent binding between auction type and effective price
— Determining winners in auctions

— Different types of notification mechanisms

e Composite: The bid structure in complex auctions (such as combi-
natorial auctions) can be complex since it includes arbitrary combi-
nations of products as part of a bid. If the Composite pattern is used
to represent bids, then WHAT will be easily extensible to any type of
auction.

e Decorator: Decorate auction object with multiple individual value
added services such as can be provided to sellers and buyers. Buyers
and sellers may requisition these value added services dynamically and
the Decorator pattern can be used to add/delete these services at run
time.

17

e Facade: Auction house provides a unified interface to the whole sys-
tem and uses the Facade pattern.

e Iterator: To access information from the database about individ-
ual auctions without knowing the type of the auction. For example,
information about a Dutch auction may be stored in one way and
information about an Opencry auction may be stored in a totally dif-
ferent way, but by using the Iterator pattern, it is possible to extract
information without knowing the type of auction whose information
is being sought.

e Proxy: To provide detailed description of item. Some items on auc-
tion may have complex images, VRML files describing them. These
may be loaded only on demand.

e Observer: Automatic generation of services, notifications, etc. when
designated events happen during the auction process. The occurrence
of such events triggers the notifications to be sent to all subscribers
to the event.

e Strategy: Different types of auction protocols have different ways of
determining winners, settling the trade, etc. Strategy can be used in
these situations.

e Chain of Responsibility: Consortium forwards requests to a chain
of auction houses to handle new auction requests from sellers.

The use of the above design patterns has resulted in an extensible design
model for WHAT. The following factors enable a high level of reusability
and extensibility of the WHAT design model.

e Create objects indirectly and avoid creating and object by explicitly
specifying a class

e Reduce dependence on object representation or implementation by
hiding the internals from clients

18

e Reduce algorithmic dependencies by isolating algorithms that are likely
to change

e Promote loosely coupled classes

e Avoid subclassing as a means to extend functionality; use composition
instead

e Comprises abstract classes from which application-specific subclasses
can be created to build a particular customized application

e Design reuse and flexibility are important

5 Implementation

WHAT has been implemented as a four tier architecture as shown in Figure
8. The UI package comprises HTML pages and forms to be used by the
web clients. The middleware package (consortium) has been implemented
using CORBA. The Business logic package and web services employ the
Java servlet technology. MySQL database system has been used for the
consortium database and also the databases of individual auction houses.
The utility package is basically the mail server.

Figures 9 and 10 show the component and deployment diagram, respec-
tively for the implementation of WHAT.

6 Future Work

WHAT is an experimental, prototypical product and in its present state
of implementation, cannot scale to high levels. However, the design model
of WHAT has been created to support highly scalable and powerful im-
plementations. Some features that future versions of WHAT will have to
support include:

e complex auctioning mechanisms and algorithms

e deployment of agents

19

CLIENTS

| Buyer-registration.html

| Seller-registration.html

| Buyer-login.html

| Seller-login.html

AuctjonSetup.html
initial

|cance|Auction.htmI

| CloseAuction.html

|AuctionQuery.htmI

|OpenCryBi d.html

|DutchBid.htmI

|SetupOpenCryfi nal.html

|SetupDutchfi nal .html

CONSORTIUM

Buyer-Login.class

I~
~
~
~

> Database.class

er-registration.class

g\

e

/6 crySetu malcla& -

|
opencry-Bid.class _- / nalpenHelper.class
_ 7/
’
\ ’

/
Aucti onCancIe clas , !

|
|
[
|
|
|
|
|
|
— !
—~ ~ remote-object-factory.class
|
|
|

Setupfinal dpenStub.cIa&

t AUCTIONSERVERS

opencry-Auction.class

e

|
/
\ / /
\ S Ll - -
A
/ . -
/ opencryAuctionSetupfinal .class
\ Au onCIosecIass/ / pencry P
/ /
/
/
\ LIy

\\ DutchBid.class /

Figure 9: UML component diagram for WHAT

20

PC1: WHATClient

Deploys
Buyer-registration.html
Buyer-login.htiml
Seller-registration.html
Seller-login.html
AuctionSetupinitial.html
SetupOpenCryfinal.html
SetupDutchfinal .html

HTTP

CNS: CONSORTIUM

PC2: WHATClient

Deploys
master-servlet.class
setupfinal.class
remote-object-factory.class
setupfinal openhel per.class
setupfinal openstub.class

ASL: AUCTION SERVEW

Deploys
opencryauctionsetupfinal .clasg
opencryAuction.class

RBA

CORBA

AS2: AUCTION SERVER

&

HTTP

WorkStation: WHATClient

TCP/IP

(CDBS: CONSORTIUM DATA BASE

TIER-1
CLIENTS

TIER-2
CONSORTIUM

BA

Deploys
DutchAuctionSetupfinal .class
DutchAuction.class

~TCPIP

Bedbs:Backendaucti
Server Database

pn|

Da[t)%)elygéglass
D ni.cl

MS:MAILSERVER

ASn:AUCTION SERVER
|
|
TIER-3 !
(BACKEND) : TIER-4
|

AUCTION SERVERS

Figure 10: UML deployment diagram for WHAT

21

e security of data and transactions

e maintaining anonymity of buyers and sellers

e notification mechanisms to indicate the status and progress of auctions
e participation in multiple auctions

e searching through the ongoing auctions for desired information (search
engine)

Due to paucity of space, this article could not cover all details of analysis
and design of WHAT. Interested readers should contact any of the authors
by email for more details.

Acknowledgments

We would like to thank Mr Chandrasekhar for preparing excellent figures
for this paper.

References

[1] G. Booch. Object-Oriented Analysis and Design with Applications. Second Edition. Ben-
jamin Cummings, 1994

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison Wesley Longman, 1999.

[3] Jim Conallen. Modelling Web Application Architectures with UML. Communications of
the ACM, October 1999, pp.63-70

[4] Jim Conallen. Building Web Applications with UML. Addison Wesley, 1999.
[5] H.E. Eriksson and M. Penker. UML Toolkit. Wiley Computer Publishing, 1998.

[6] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns - Ele-
ments of Reusable Object-Oriented Software. 1995. Addison-Wesley Longman, Second ISE
Reprint, 1999.

[7] 1. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Process.
Addison Wesley Longman, 1999.

[8] Manoj Kumar and Feldman. Internet Auctions. http://www.ibm.com/iac

22

[9] Patterns Home Page. http://www.hillside.net/patterns/patterns.html

[10] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson. Object-oriented Mod-
eling and Design. Prentice Hall, Englewood Cliffs, 1991. Reprinted by Prentice Hall of India,
Eastern Economy Edition, 1997

[11] Mary Shaw and David Garlan. Software Architecture - Perspectives on an Emerging Dis-
cipline. PHI Eastern Economy Edition, 1999.

23

