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ABSTRACT -- 
Stochastic Petri Nets (SPNs) have recently emerged 

as a principal performance modelling tool for 
distributed systems such as multiprocessors, local area 
networks, and automated manufacturing systems. Since 
the use of SPNs as an analytical tool is based on the 
generation of the entire state space, the technique 
becomes intractable for large systems. In such cases, 
discrete event simulation is the preferred tool for 
perfxmance evaluation. In this paper, we show how 
SPNs can be used as a simulation model. We present 
several efficient algorithms based on SPNs, for 
conducting discrete event simulations of distributed 
systems. 

1. INTRODUCTION 

Performance modelling and avaluation constitute an 
important aspect of the design of distributed sysiL,ems 
such as multiprocessors, local area networks, and 
automated manufacturing systems,. Performance modt?ls 
are mainly of two types: analytical and simulaticm. 
Analytical models such as Markov chains, queueing 
networks, and stochastic Petri nets (SPNs) Ere 
excellent for a quick, approximate evaluation of 
performnce but become intractable if a detailed 
evaluation of a large system is required. Simulation 
is typically used in such contexts. 

Imagine the following scenario: A performance 
model, based on SPNs, has been constructed for a given 
distributed system. We find that this model is 
intractable (that is, very difficult to analyze) A y  simplifications in the SFT! model that would make it 
tractable are unacceptable and simulation is the only 
alternative. In this situation, it will be congenial 
to use the same SPW model and carry out a simulation of 
the SPN model. With this as the motivation, we show in 
this paper that SPMs indeed lead to an elegant model of 
-"screte event simulation. 

In Section 2, we present an informal introduction 
to SPNs with an illustrative example. In Section 3, we 
first discuss how an SPN embeds all information 
necessar,' for a discrete event simulation. Next, we 
outline some important SPN-based algorithms that can be 
used in discrete event simulation. Finally we show the 
basic steps in simulation output analysis using SPNs. 
In section 4, we present some conclusions. 

2. STOCHASTIC PETRI NETS 

Petri nets [I] have ema2ged as a prominent 
modelling tool of concurrent systems. A class of timed 
Petri nets called generalized stochastic Petri nets 
(GSPTJs) [2] are well suited for performance' mol5elling. 
In the framework of GSPNs and Extended stochastic Petri 
nets [3], several features of distributed system such 
as concurrency, non-determinism, and synchronization 
can be captured in an elegamt way. 

Informally, any SPN comprises a set of places, e 
set of transitions, a set of arcs, an initial marking, 
and an assignment of random variables to transitions. 
In the SPN-representation of a distributed systen, 
places represent logical conditions 3r resources in the 
system; transitions represent events or activities; 
arcs represent interdependencies among places and 
transitions; initial nlarking refers to the initial 
state of the system; and the random variables model the 
durations of various activities in the system. The 
evolution of an SPN in time constitutes a stochastic 
process called the marking process of the SET. The use 
of SPNs as an analytical model is based on a steady- 
state analysis of the marking process. In this paper: 
we look at situations where the SPN ~:0.7e1 is huge 
enough to make this steady-state analysis intractable 
and simulation is the only alternative. 

We first illustrate the construceon of an SPN 
model of a simple queueing network model. Figure 1 
depicts a queueing network model popularly called the 
closed central server network model [&I. This model 
has three queues, Q , Q and %, corresponding to 
three resources. Thi8 moAel has been used to describe 
a multiprogrammed operating systen with one CPU er.d two 
input/output devices [ 41. Another interpretation for- 
this model is t%t of an automatee manufacturing system 
comprising ari S V  (automated guided vehicle; and two 
machines M, and k% [5]. We shall use the latter 
interpretation in t h s  paper. 

Figure 2 shows a GSPX model for the queueing 
network mder study. The circles in the diagram are 
called places and represent conditions or resources in 
the system. There are IC places in the model. Their 
interpretation is given in Table 1. The horizontal 
bars tZ' t3, t6, td, ti, and t are called immediate 
transit ons an r pre ent logical changes in the 
system. The rectangular bars' t , t8, and t are called 
exponential transit:ions and rep?esent timed9 activities 
such as processing by machines and transportation by 
AGV. These three transitions are associated with 
exponential random numbers with rates U , Ul, and U 
respectively. interpretation of goth types 03 
transitions are also given in Table 1. The presence of 
black dots (called 'tokens' ) inside the places p2, 
and pl0 indicates that the AGV is free, a part % 
getting processed by M , and the other part is getting 
processed by M2. This'is the initial state or initial 
marking of the system (the words 'state' and 'marking' 
are used interchangeably in the sequel). Note that the 
immediate transitions t t ~ n d .  t are conflicting in 
the sense that only onJ'of%hem fdes at any point of 
time, disabling the others. The probability with which 
each can fire is specified by the probability 
distribution {q,, ql, q2} defined on this set of 
transitions. 

The dynamic evolution of a GSPN model constitutes 
a stochastic process, called the marking process. It 
has been shown fn  the case of GSPNs, that the marking 
process I s  a semi-1 Ymkov process [2]. Haas and Shedler 
6,7] have shown that the narking process of a general 
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Figure 1. A closed Queueuing Network Model. 

Figure 2. GSPN Model of the Queueing Network in Fig. 1. 

Places : 
1 
2 : AGV available 
3 
4 
5 
6 
7 : M I  available 
8 : M2 available 
9 
10 

Immediate Transitions : 
1 
3 
4 
5 
6 
7 

Exponential Transitione: 
2 : po : Part transfer by the AGV 

8 : ul : Processing by M1 

9 : U2 : Processing by M2 

: Queue of parts waiting for the AGV 

: AGV transporting a part 
: A part that has just been transported by the AGV 
: Queue of parts waiting for MI 
: Queue of parts waiting for*K? 

: MI processing a part 
: M2 processing a part 

: AGV starts transporting a part 
: Finished part gets unloaded 
: Part joins the queue for MI 
: Part joins the queue for M2 
: M1 starts processing a part 
: M2 starts processing a part 

Table 1. Description of the GSPN model 

3 (a) Sequential Execution 

3 (b) Concurrency 

3(c) Conflict 

3 (a) Synchronization 

3(e) Priorities 

Figure 3. Petri  Net Representation 
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class of SPNs is a GSMP (generalized semi-Markov 
process). 

3. DISCRETE EVENT SIMULATION USING SPNs 

3.1 SPW as 5 Simulation Model 

The usual model for the underlying stochastic 
process of a discrete event simulation is a generalized 
semi-markov process (GSW) [61. The marking process of 
an SPM model is also a GSMP. Thus the description 
power of an SPN model is the same as that of a discrete 
event simulation. The places of an SPN model represent 
the resources or conditions in the physical system 
while transitions represent events or activities in the 
system. The transitions of an SPN naturally map onto 
the events of a discrete event simulation. The set of 
a l l  reachable markings of an SPB gives the state space 
modelled by a discrete event simulation. 

An SPN model can elegantly capture the features of 
a distributed system, such as concurrency, 
communication and synchronization. Figures 3 (a) - 3 (e) 
depict Petri net representations for sequential 
execution, concurrency, conflict, synchronization, and 
priorities. The SPN model of a distributed system will 
typically involve all of these features. In Figure 
3(a), there are two transitions t, and t2, of which tl is enabled. fires, a token is deposited in p2, 
enabllng t Thus khe execution of tl and t follows a 
preceder,ce2' relation, which indicates 2sequential 
execution. In figure 3(b), t is enabled and its 
firing results in a token in each of the places p , p , 
and p . 
are ehabled and this represents threg Joncurreni 
activities. The situation in figure 3(c) is that the 
transitions t , t , and t are al.1 enabled but only one 
of them can' fige becade of a single 
Here, the firing of t , for example, will disable 
and t . The above tdee are conflicting activities. 
n e  canflict is often resolved by associating a 
probability distribution to the set {t , t , t } . This 
was what we did in the case of the GSPib mo8el af figure 
2 (see transitions t t and t ) in figure 2. In 
figure 3(d), t is not3~naff;ed because p does not have 
a token. of 
a token in p , which amounks to synchronization. In 
Figure 3(e) ,3 there is a special arc called. the 
inhibitor arc from p2 to tl. As a consequence, tl 
fires if there is a token in p and there is no token 
in p2. provides a way df giving priority to 
transition t over transition tl. 

When t 

1 
Now all the three transitions t , t , &d 2 

token in p 

The &nabling of t now awaits ?he arrival 

This 
2 

3.2 SPN-based Algorithms 

Here, we discuss the following two problems: 

Algorithm 1: Determining the set of events that 
w i l l  fire next, given the current set of enabled 
events. 
Algorithm 2: Computing the next set of enabled events, 
given (a) the current state and. (b) the current set of 
events that will fire. 

SPNs can be used in a natural way because the 
concept of transitions and firing rules in SPNs closely 
models what happens in a discrete event simulation. 

In Algorithm 1 ,  given the set of enabled immediate 
transitions in the current state, we first compute the 
sets of conflicting transitions and concurrent 
transitions among these. We select one transition in 
every conflict set and all concurrent transitions, to 
fire next. There could be two problem cases here: (a) 
€!ow to select a transition if two or more conflict sets 
are not disjoint. (b) How to select a transition in the 

case of 'confusion' (a situation where concurrency and 
conflict are both present in a special way; see 
reference [SI for more details). Owing to space 
constraints, this algorithm is not given here. The 
complete algorithm may be found in [91. 

In Algorithm 2, we are given the current state and 
the current set of transitions selected to fire next. 
In the SPN framework, this algorithm can be made 
efficient by restricting the checking of enabledness to 
only the ortput transitions of the input places and the 
output places of all the firing transitions. The 
details of this algorithm can be found in [91. 

3.3 Generic Performance Measures 

We discuss here the computation of performance 
measures of interest in SPN based simulation. 
Simulation is carried out for a given number of 
transition firings. Each time a transition fires, the 
state of the system changes. In terms of the Petri net 
model, the changes that occur when a transition fires 
are: (1) The input places of the transition lose 
tokens. (2) The output places of the transition gain 
tokens. (3) The clock in the simulated system advances 
by the firing time of the transition. ( 4 )  The total 
number of times this transition has fired gets 
incremented by 1. 

In the simulation, each time a transition fires, 
the above changes are monitored and stored in suitably 
chosen data structures. At the end of the simulation, 
performance measures are computed by looking at the 
values contained in these data structures. 

Data Structures 

a) Global Clock: This is a global real variable with 
initial value zero. It gets incremented each time a 
timed transition fires, by an amount equal to the 
firing time of the transition. When an immediate 
transition fires, the global clock is not incremented. 

b) Firings: 'Firings' is a vector with one element for 
every transition. at 
any given point in simulation, givds the total Jnumber 
of times t. has fired from the start of the simulation. 

c) Tokenloss: 'Token loss' is a vector with one 
element for every place. For place p., tokenloss [p. 1 
gives the total number of. times pi has lost a tokh 
during the simulation so far. 

d) Tokentime: 'Token time' is a two dimensional array 
where the first dimension corresponds to the places and 
the second dimension to numbers of tokens. For 
example, if there are 50 places in the model and the 
maximum number of tokens that can reside in any place 
is IO, we define token time [1:50, 0:10]. Token time 
[23,5], for example, would give the total amount of 
time in the simulation to far, for which places pZ3 had 
exactly 5 tokens. 

e) Narktime: 'YTk time' is a vector with one element 
for every marking in the Petri net. 
(state), Hark time (k) would give the to a1 time for 
which the system has spent in marking Mk, so far. 

f) Tokenfultime: 'Tokenfultime' is a vector with one 
element for every place. Tokenfultime (p.) gives the 
total time so far for which pi has conta&ed at least 
one token. 

For transition t . , Firings [t . I ,  

J 

If 9 is a marking 

Performance Measures 

We describe below how generic performance measures 
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can be defined. Specific perforxance measures for the 
giver system car! be computed from these. 

a) Steady state robabilities of markin s: Let 14, be a 
marking. Then :he steady sta5 probab?lity of % is 
given by 

SSP($) = mrktime(k)/globaltime 

b) Probabilit that a condition is satisfied in the 
s y s t d b e m d i t i o n  (such as system working, 
bus busv. machine idle. so on). and let PROB(C) be the 
required" probability , thep 

PROB(C) = ( C marktime(k))/(globaltime) 
I j p ( C )  

The summation is over the set S(C) which is the set of 
all markings in which the condition is satisfied. 

c) Probabilit that place p. has exactly k tokens: The 
required p r o z b m y  is givhn- 

€'ROB( Pi, k) = ( tokentime[ i , k] ) / (globaltime) 

d) Fxpected number of tokens in place pi: The required 
measure is given by 

m 

e)  jverape waitinq time in place pi: 

WAIT(pi) = (tokenfultime[i] )/(tokenloss[i]) 

f) Thro h utratg of a transition t .: This is the 
expectedynkber of times a transitioA fires per unit 
time and is given by 

TR (t . ) = firings [ j 1 ) / ( globaltime ) 
J 

4. CONCLUDING REMAWE 

In the context of discrete event simulation, we 
have shown that SPNs provide a natural model because 
transitions represent the events and the SPN 
incorporates a considerable amount of information about 
the set of events that can occur when the process is in 
a particular state and about the sets of 'new events' 
and 'old events' when' a transition fires in a 
particular state. Also, the marking process of an SPN 
is a generalized semi-Markov probess which is the usual 
model for the underlying stochastic process of a 
discrete event simulation. 

A software package has been developed i n  the 
language C, for discrete event simulation based on 
SPNs. This pwkage incorporates all of the techniques 
discussed in Section 3. For details of the algorithms 
a d  the implementation, the reader is referred to 
[9,103. 
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