
DISCRETE EVENT SIMJLATION OF DISTIIIBUT%D SYSTEM USING STOCHASTIC PETRI NETS

Y. Narahari, K. Suryanarayanan and N.V. SubSa Reddy

Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012, INDIA

ABSTRACT --
Stochastic Petri Nets (SPNs) have recently emerged

as a principal performance modelling tool for
distributed systems such as multiprocessors, local area
networks, and automated manufacturing systems. Since
the use of SPNs as an analytical tool is based on the
generation of the entire state space, the technique
becomes intractable for large systems. In such cases,
discrete event simulation is the preferred tool for
perfxmance evaluation. In this paper, we show how
SPNs can be used as a simulation model. We present
several efficient algorithms based on SPNs, for
conducting discrete event simulations of distributed
systems.

1. INTRODUCTION

Performance modelling and avaluation constitute an
important aspect of the design of distributed sysiL,ems
such as multiprocessors, local area networks, and
automated manufacturing systems,. Performance modt?ls
are mainly of two types: analytical and simulaticm.
Analytical models such as Markov chains, queueing
networks, and stochastic Petri nets (SPNs) Ere
excellent for a quick, approximate evaluation of
performnce but become intractable if a detailed
evaluation of a large system is required. Simulation
is typically used in such contexts.

Imagine the following scenario: A performance
model, based on SPNs, has been constructed for a given
distributed system. We find that this model is
intractable (that is, very difficult to analyze) A y simplifications in the SFT! model that would make it
tractable are unacceptable and simulation is the only
alternative. In this situation, it will be congenial
to use the same SPW model and carry out a simulation of
the SPN model. With this as the motivation, we show in
this paper that SPMs indeed lead to an elegant model of
-"screte event simulation.

In Section 2, we present an informal introduction
to SPNs with an illustrative example. In Section 3, we
first discuss how an SPN embeds all information
necessar,' for a discrete event simulation. Next, we
outline some important SPN-based algorithms that can be
used in discrete event simulation. Finally we show the
basic steps in simulation output analysis using SPNs.
In section 4, we present some conclusions.

2. STOCHASTIC PETRI NETS

Petri nets [I] have ema2ged as a prominent
modelling tool of concurrent systems. A class of timed
Petri nets called generalized stochastic Petri nets
(GSPTJs) [2] are well suited for performance' mol5elling.
In the framework of GSPNs and Extended stochastic Petri
nets [3], several features of distributed system such
as concurrency, non-determinism, and synchronization
can be captured in an elegamt way.

Informally, any SPN comprises a set of places, e
set of transitions, a set of arcs, an initial marking,
and an assignment of random variables to transitions.
In the SPN-representation of a distributed systen,
places represent logical conditions 3r resources in the
system; transitions represent events or activities;
arcs represent interdependencies among places and
transitions; initial nlarking refers to the initial
state of the system; and the random variables model the
durations of various activities in the system. The
evolution of an SPN in time constitutes a stochastic
process called the marking process of the SET. The use
of SPNs as an analytical model is based on a steady-
state analysis of the marking process. In this paper:
we look at situations where the SPN ~:0.7e1 is huge
enough to make this steady-state analysis intractable
and simulation is the only alternative.

We first illustrate the construceon of an SPN
model of a simple queueing network model. Figure 1
depicts a queueing network model popularly called the
closed central server network model [&I. This model
has three queues, Q , Q and %, corresponding to
three resources. Thi8 moAel has been used to describe
a multiprogrammed operating systen with one CPU er.d two
input/output devices [41. Another interpretation for-
this model is t%t of an automatee manufacturing system
comprising ari S V (automated guided vehicle; and two
machines M, and k% [5]. We shall use the latter
interpretation in t h s paper.

Figure 2 shows a GSPX model for the queueing
network mder study. The circles in the diagram are
called places and represent conditions or resources in
the system. There are IC places in the model. Their
interpretation is given in Table 1. The horizontal
bars tZ' t3, t6, td, ti, and t are called immediate
transit ons an r pre ent logical changes in the
system. The rectangular bars' t , t8, and t are called
exponential transit:ions and rep?esent timed9 activities
such as processing by machines and transportation by
AGV. These three transitions are associated with
exponential random numbers with rates U , Ul, and U
respectively. interpretation of goth types 03
transitions are also given in Table 1. The presence of
black dots (called 'tokens') inside the places p2,
and pl0 indicates that the AGV is free, a part %
getting processed by M , and the other part is getting
processed by M2. This'is the initial state or initial
marking of the system (the words 'state' and 'marking'
are used interchangeably in the sequel). Note that the
immediate transitions t t ~ n d . t are conflicting in
the sense that only onJ'of%hem fdes at any point of
time, disabling the others. The probability with which
each can fire is specified by the probability
distribution {q,, ql, q2} defined on this set of
transitions.

The dynamic evolution of a GSPN model constitutes
a stochastic process, called the marking process. It
has been shown fn the case of GSPNs, that the marking
process I s a semi-1 Ymkov process [2]. Haas and Shedler
6,7] have shown that the narking process of a general

The

p

622

31.4.1
CH2766 - 4/89/0000 - 0622 (a 1989 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 11, 2008 at 04:14 from IEEE Xplore. Restrictions apply.

Figure 1. A closed Queueuing Network Model.

Figure 2. GSPN Model of the Queueing Network in Fig. 1.

Places :
1
2 : AGV available
3
4
5
6
7 : M I available
8 : M2 available
9
10

Immediate Transitions :
1
3
4
5
6
7

Exponential Transitione:
2 : po : Part transfer by the AGV

8 : ul : Processing by M1

9 : U2 : Processing by M2

: Queue of parts waiting for the AGV

: AGV transporting a part
: A part that has just been transported by the AGV
: Queue of parts waiting for MI
: Queue of parts waiting for*K?

: MI processing a part
: M2 processing a part

: AGV starts transporting a part
: Finished part gets unloaded
: Part joins the queue for MI
: Part joins the queue for M2
: M1 starts processing a part
: M2 starts processing a part

Table 1. Description of the GSPN model

3 (a) Sequential Execution

3 (b) Concurrency

3(c) Conflict

3 (a) Synchronization

3(e) Priorities

Figure 3. Petri Net Representation

31.4.2
623

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 11, 2008 at 04:14 from IEEE Xplore. Restrictions apply.

class of SPNs is a GSMP (generalized semi-Markov
process).

3. DISCRETE EVENT SIMULATION USING SPNs

3.1 SPW as 5 Simulation Model

The usual model for the underlying stochastic
process of a discrete event simulation is a generalized
semi-markov process (GSW) [61. The marking process of
an SPM model is also a GSMP. Thus the description
power of an SPN model is the same as that of a discrete
event simulation. The places of an SPN model represent
the resources or conditions in the physical system
while transitions represent events or activities in the
system. The transitions of an SPN naturally map onto
the events of a discrete event simulation. The set of
a l l reachable markings of an SPB gives the state space
modelled by a discrete event simulation.

An SPN model can elegantly capture the features of
a distributed system, such as concurrency,
communication and synchronization. Figures 3 (a) - 3 (e)
depict Petri net representations for sequential
execution, concurrency, conflict, synchronization, and
priorities. The SPN model of a distributed system will
typically involve all of these features. In Figure
3(a), there are two transitions t, and t2, of which tl is enabled. fires, a token is deposited in p2,
enabllng t Thus khe execution of tl and t follows a
preceder,ce2' relation, which indicates 2sequential
execution. In figure 3(b), t is enabled and its
firing results in a token in each of the places p , p ,
and p .
are ehabled and this represents threg Joncurreni
activities. The situation in figure 3(c) is that the
transitions t , t , and t are al.1 enabled but only one
of them can' fige becade of a single
Here, the firing of t , for example, will disable
and t . The above tdee are conflicting activities.
n e canflict is often resolved by associating a
probability distribution to the set {t , t , t } . This
was what we did in the case of the GSPib mo8el af figure
2 (see transitions t t and t) in figure 2. In
figure 3(d), t is not3~naff;ed because p does not have
a token. of
a token in p , which amounks to synchronization. In
Figure 3(e) ,3 there is a special arc called. the
inhibitor arc from p2 to tl. As a consequence, tl
fires if there is a token in p and there is no token
in p2. provides a way df giving priority to
transition t over transition tl.

When t

1
Now all the three transitions t , t , &d 2

token in p

The &nabling of t now awaits ?he arrival

This
2

3.2 SPN-based Algorithms

Here, we discuss the following two problems:

Algorithm 1: Determining the set of events that
w i l l fire next, given the current set of enabled
events.
Algorithm 2: Computing the next set of enabled events,
given (a) the current state and. (b) the current set of
events that will fire.

SPNs can be used in a natural way because the
concept of transitions and firing rules in SPNs closely
models what happens in a discrete event simulation.

In Algorithm 1 , given the set of enabled immediate
transitions in the current state, we first compute the
sets of conflicting transitions and concurrent
transitions among these. We select one transition in
every conflict set and all concurrent transitions, to
fire next. There could be two problem cases here: (a)
€!ow to select a transition if two or more conflict sets
are not disjoint. (b) How to select a transition in the

case of 'confusion' (a situation where concurrency and
conflict are both present in a special way; see
reference [SI for more details). Owing to space
constraints, this algorithm is not given here. The
complete algorithm may be found in [91.

In Algorithm 2, we are given the current state and
the current set of transitions selected to fire next.
In the SPN framework, this algorithm can be made
efficient by restricting the checking of enabledness to
only the ortput transitions of the input places and the
output places of all the firing transitions. The
details of this algorithm can be found in [91.

3.3 Generic Performance Measures

We discuss here the computation of performance
measures of interest in SPN based simulation.
Simulation is carried out for a given number of
transition firings. Each time a transition fires, the
state of the system changes. In terms of the Petri net
model, the changes that occur when a transition fires
are: (1) The input places of the transition lose
tokens. (2) The output places of the transition gain
tokens. (3) The clock in the simulated system advances
by the firing time of the transition. (4) The total
number of times this transition has fired gets
incremented by 1.

In the simulation, each time a transition fires,
the above changes are monitored and stored in suitably
chosen data structures. At the end of the simulation,
performance measures are computed by looking at the
values contained in these data structures.

Data Structures

a) Global Clock: This is a global real variable with
initial value zero. It gets incremented each time a
timed transition fires, by an amount equal to the
firing time of the transition. When an immediate
transition fires, the global clock is not incremented.

b) Firings: 'Firings' is a vector with one element for
every transition. at
any given point in simulation, givds the total Jnumber
of times t. has fired from the start of the simulation.

c) Tokenloss: 'Token loss' is a vector with one
element for every place. For place p., tokenloss [p. 1
gives the total number of. times pi has lost a tokh
during the simulation so far.

d) Tokentime: 'Token time' is a two dimensional array
where the first dimension corresponds to the places and
the second dimension to numbers of tokens. For
example, if there are 50 places in the model and the
maximum number of tokens that can reside in any place
is IO, we define token time [1:50, 0:10]. Token time
[23,5], for example, would give the total amount of
time in the simulation to far, for which places pZ3 had
exactly 5 tokens.

e) Narktime: 'YTk time' is a vector with one element
for every marking in the Petri net.
(state), Hark time (k) would give the to a1 time for
which the system has spent in marking Mk, so far.

f) Tokenfultime: 'Tokenfultime' is a vector with one
element for every place. Tokenfultime (p.) gives the
total time so far for which pi has conta&ed at least
one token.

For transition t . , Firings [t . I ,

J

If 9 is a marking

Performance Measures

We describe below how generic performance measures

31 A.3
624

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 11, 2008 at 04:14 from IEEE Xplore. Restrictions apply.

can be defined. Specific perforxance measures for the
giver system car! be computed from these.

a) Steady state robabilities of markin s: Let 14, be a
marking. Then :he steady sta5 probab?lity of % is
given by

SSP($) = mrktime(k)/globaltime

b) Probabilit that a condition is satisfied in the
s y s t d b e m d i t i o n (such as system working,
bus busv. machine idle. so on). and let PROB(C) be the
required" probability , thep

PROB(C) = (C marktime(k))/(globaltime)
I j p (C)

The summation is over the set S(C) which is the set of
all markings in which the condition is satisfied.

c) Probabilit that place p. has exactly k tokens: The
required p r o z b m y is givhn-

€'ROB(Pi, k) = (tokentime[i , k]) / (globaltime)

d) Fxpected number of tokens in place pi: The required
measure is given by

m

e) jverape waitinq time in place pi:

WAIT(pi) = (tokenfultime[i])/(tokenloss[i])

f) Thro h utratg of a transition t .: This is the
expectedynkber of times a transitioA fires per unit
time and is given by

TR (t .) = firings [j 1) / (globaltime)
J

4. CONCLUDING REMAWE

In the context of discrete event simulation, we
have shown that SPNs provide a natural model because
transitions represent the events and the SPN
incorporates a considerable amount of information about
the set of events that can occur when the process is in
a particular state and about the sets of 'new events'
and 'old events' when' a transition fires in a
particular state. Also, the marking process of an SPN
is a generalized semi-Markov probess which is the usual
model for the underlying stochastic process of a
discrete event simulation.

A software package has been developed i n the
language C, for discrete event simulation based on
SPNs. This pwkage incorporates all of the techniques
discussed in Section 3. For details of the algorithms
a d the implementation, the reader is referred to
[9,103.

REFEUENCEs

J.L. Peterson, 'Petri Net Theory and the Modelling - of Systems', Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1981.
M.A. Mar&m, G. Balbo, and G. Conte, 'A Class of
Generalized Stochastic petri Nets for the
Performance Evaluation of Multiprocessor Systems' ,
- ACI; Transactions on Computer Systems, Vol. 2, No.
2, pp- 93-122, 1984.
J.B. Dugan, K.S. Trivedi, R.M. Geist, and V.F.
Nicola, '&tended Stochastic Petri Nets:
Applications and Analysis', Performance l84', pp.
419-441, 1984.

4.

5.

6.

7.

8.

9.

..,-

K.S. Trivedi, 'Probability & Statistics with
Fieliability , Queuein and Computer Science
Applications' , Prent?ce-ml, Inc., Englewood
Cliffs, New Jersey, 1982.
Y. Narahari and N. Viswanadham, 'Performance
Modelling of Flexible Manufacturing Systems', TO
appear in: Journal of IETE, 1989.
P.J. Haas and G.S. Shedler, Regenerative Simulation
Methods for Local Area Networks, Journal of
Research and Development, Vol. E 194-205
1985.
P.J. Haas and G.S. Shedler, Stochastic Petri Net
Representation of Discrete Event Simulations, E
Research Report RJ 5646 (571453, July 1987.
M.A. Marsan, G. Balbo, G. Chiola, and G. Conte,
'GSRNs Revisited: Random Switches and Priorities',
Proc. Inti. Workshop on Petri Nets and Performance
Models, Madison, pp. 44-53, August 1987.
K. Surianarayanan, 'Petri Net based Algorithms for
Discrete Event Simulation' , B.E. Project Report,
Dept. of CSA, 1.1.S~. , April 1989.

--

--
10. N.V. Subba Reddy, 'Discrete Event Simulation usinr?;

Petri Nets', M.E. Project Report, Dept. of CSA,
1.1.S~. , 1989.

31.4.4
625

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 11, 2008 at 04:14 from IEEE Xplore. Restrictions apply.

