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Abstract 
In  this  article, we  develop three e f lc ient  extensions 
t o  a recent production scheduling algorithm based on 
Lagrangian relaxation [9]. These extensions handle 
the following real-world features: 

0 stochastic availability of raw material, 

0 reworking and scrapping of parts ,  and 

0 incorporating set-up costs and set-up t imes  in the 
Scheduling of multiclass manufacturing sys tems 

The f irs t  t w o  extensions yield on-lane algorithms which 
are illustrated using a 89-job scheduling problem. The 
t h i d  extension uses an algorithmic procedure t o  inserl 
switchovers t o  obtain a good schedule and is  illustrated 
for  a two-class ,  89-job scheduling problem. 

1 Introduction 
Discrete activity scheduling [2, 3, 7 ,  121 is probably the 
most important issue in the design and operation of 
manufacturing systems. This paper is concerned with 
deterministic machine scheduling in a system compris- 
ing parallel identical machines. We present three real- 
world extensions to a recent production scheduling al- 
gorithm based on Lagrangian relaxation [9]. The ex- 
tensions handle the following real-world features: 

1. Stochastic availability of raw material 

2. Reworking and scrapping of parts 

3. Switchover costs and set-up times encountered in 
the scheduling of multiclass manufacturing sys- 
tems. 

These extensions are illustrated for a detailed 89-job 
example adapted from a real-world problem presented 
in [9]. 
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1.1 Schedule Generation Using La- 
grangian Relaxation 

The theory of sequencing and scheduling, more than 
any other area in Operations Research, is character- 
ized by a virtually unlimited number of problem types 
[2, 71. Recently, in the area of deterministic ma- 
chine scheduling, scheduling algorithms based on La- 
grangian relaxation [l, 81 have been proposed and have 
proved to be highly effective in real-world factory situ- 
ations. These Lagrangian relaxation-based algorithms 
have been reviewed in [6]. Luh, Hoitomt, Max, and 
Pattipati [9] presented the first of these algorithms for 
the case of scheduling single operation jobs on parallel 
identical machines. Later, the approach was extended 
to the case of multiple-operation jobs with precedence 
constraints [5]. More recently, the approach has been 
extended to general job shop scheduling problems [4, 
61. The algorithms use a decomposable objective func- 
tion such as the total weighted tardiness and obtain 
the solution by solving independent, job-level sub- 
problems. 

We now give a brief description of the basic tech- 
nique that we employ in this paper. This technique 
is due to Luh, Hoitomt, Max, and Pattipati [9]. The 
method is used for the nonpreemptive discrete time 
scheduling of independent jobs on identical, parallel 
machines and is based on the Lagrangian relaxation 
algorithm [1,8]. The input variables are: 
N : Number of jobs 
K : Time horizon for scheduling 
w1, . . . W N  : Weights (relative importance) of jobs 
t l ,  . . . , t N  : Processing times of the jobs 
D1, . . . , DN : Due dates of the jobs 
M I ,  . . . , M K  : Numbers of machines available at  dis- 
crete time instants 1 , 2 , .  . . , K ,  respectively. 

The decision variables are B1 , . . . , BN , the begin- 
ning times for the jobs. Now, define, for i = 1 , .  . . , N ,  
and k =  l , . . . , K ,  
6 i k  = 1 if job i is undergoing processing at  time k 
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b j k  = 0 if job i is not undergoing processing at  time k 
Ci = Completion time of job i 
Ti = mat(0,Ci - Di} 

function of interest is 
Ti represents the tardiness of job i. The objective 

N 
J = CW~Z 

i=l 

which is the weighted tardiness criterion. This cri- 
terion takes into account the relative importance of 
jobs, and the importance of meeting due dates. The 
scheduling problem can now be stated as follows. 

N 
min J with J = X w i Z  
{BSI i=l 

subject to capacity constraints: 

N 
6 .  t k -  < Mh,k= l , . . . , K  

i=l 

and processing time requirements: 

The problem is solved by maximizing the dual func- 
tion which is obtained by using a set of multipliers to 
relax the capacity constraints. The dual problem can 
be decomposed into N subproblems, one for each job. 
The computational complexity of each subproblem is 
linear in K .  Using these N solutions, the dual problem 
is solved using a subgradient method [lo]. The stop- 
ping criterion used in the above subgradient method 
does not always yield a feasible schedule, in the sense 
that the capacity constraints might be violated for a 
few time slots [9]. To construct a feasible schedule, a 
greedy heuristic based on the list scheduling concept 
is used. 

1.2 Extensions Proposed 
In this paper, we consider the LR (Lagrangian relax- 
ation) approach presented in [9] and develop exten- 
sions to address three real-world features in schedul- 
ing. These features are diffferent from the extensions 
to the algorithm presented in [9]. 

The first extension proposed handles delayed or 
stochastic availability of raw material. Since raw ma- 
terials are usually procured from sources external to 
the machine shop, one is never sure unless the raw 
material is in hand. The LR algorithm of Luh et a1 
[9] handles in a limited way the feature of delayed 

availability of raw material, by specifying earliest start 
times, which are however assumed to be known in ad- 
vance. In a stochastic environment where the raw ma- 
terial keeps arriving into the shop at time instants not 
known in advance, the earliest start times cannot cap- 
ture fully the situation. 

The second extension seeks to address the 
rescheduling problem that arises when processed parts 
are either rejected or sent for reworking after periodic 
inspections. Parts identified for reworking cause extra 
load on the system whereas every rejected part entails 
complete reprocessing and also material waste. As a 
result, the originally drawn schedule may not be the 
best any more and rescheduling becomes necessary. 

The problem of set-ups in multiclass manufacturing 
system is addressed by the third extension we propose. 
Our method enables set-up costs to be included in the 
scheduling procedure. For this, we first obtain a sched- 
ule without set-up operations (using the LR-algorithm 
[9]) and modify this schedule using a simple heuristic 
algorithm, to include the effect of set-up times and 
set-up costs. 

The paper is organized as follows. In Section 2, we 
present the input data for a 89-job scheduling prob- 
lem, which is used for illustrating the three extensions 
proposed. This data is adapted from a real-world sit- 
uation described in [9]. The three extensions and rele- 
vant numerical experimentation are presented in Sec- 
tions 3, 4, and 5 .  

2 Data for Scheduling Example 

Table 1 shows the input data for a 89-Job system. This 
data is the same as in [9] and is a real-world data 
taken from the tool and die workcenter of Pratt  and 
Whitney’s Development operations shop. We assume 
that the machine shop has 4 identical machines (the 
data in [9] has 42 machines). The first column shows 
the job number; the second column, the job weight; 
the third column, the job processing ,time; and the 
fourth column, the job due date. The fifth column 
is a job class column introduced in this paper, spe- 
cially for discussing the set-up problem in Section 5. In 
the three sections that follow, we apply the proposed 
extensions to the above data by introducing specific 
changes needed. 
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' I  

n 
Time instant Value of 

TO 0 
9-1 10 
T2 25 
T3 28 
T4 100 

2 
- 
1 
3 
5 
7 
9 

11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 
51 
53 
55 
57 
59 
61 
63 
65 
67 
69 
71 
73 
75 
77 
79 
81 
83 
85 
87 
89 - 

si 
so 

{ 5,9,21,30,34,41,63 } 
{62,76,84 } 

{3,43,65,81,82 } 
{13,25,68,71,75,80 } 

W i  

1 
9 
1 
1 
1 
1 
6 
1 
5 
1 
1 
1 
6 
1 
1 
9 
1 
1 
1 
1 
1 
6 
1 
1 
1 
1 
1 
9 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
1 
1 

- 

- 

- 
t i  

1 
1 
1 
2 
3 
1 
5 
1 
1 
1 
1 
3 
8 
2 
2 
1 

11 
16 
3 
3 
1 
5 
1 
2 
1 
2 
1 
4 
3 
1 
5 
6 
1 
3 
8 

10 
8 
4 
3 
1 
3 
2 

12 
2 
2 

- 

- 

- 

D i  

0 
12 
1 

-2 
9 
8 

19 
7 
1 
5 
1 
0 

60 
-1 
0 

-1 
11 
24 
25 
20 

2 
10 
7 
7 
8 
7 
9 
1 
2 

10 
5 
7 

10 
7 

10 
20 
11 
15 
2 

-1 
10 
4 
9 
1 
0 

- 

- 

- 
cl 

A 
A 
A 
A 
B 
A 
B 
A 
A 
A 
A 
B 
B 
A 
A 
A 
B 
B 
B 
B 
A 
B 
A 
A 
A 
A 
A 
B 
B 
A 
B 
B 
A 
B 
B 
B 
B 
B 
B 
A 
B 
A 
B 
A 
A 

- 

- 

- 

2 

- 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 
56 
58 
60 
62 
64 
66 
68 
70 
72 
74 
76 
78 
80 
82 
84 
86 
88 

- 
W i  

1 
1 
1 
1 
1 
1 
1 
1 
1 
9 
1 
1 
1 
1 
6 
1 
1 

16 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

16 
1 
1 
1 
1 
1 
1 
1 
6 
1 
1 
1 
1 

- 

- 
t i  

2 
1 
1 
4 
1 
2 
1 
2 
3 

10 
2 
7 
9 
3 
1 
1 
2 
5 
3 
4 
3 
3 
3 
1 
2 
1 
3 
3 
2 

20 
4 
5 
3 

15 
16 
3 
4 
3 
3 
3 
3 
3 
2 
2 

- 

- 

D i  - 
15 
13 
-3 
0 
7 

13 
2 

-1 
0 
9 
8 
3 
8 
3 
2 
7 

15 
2 

24 
18 

2 
7 
2 
7 
7 

10 
2 
9 

-1 
24 

9 
5 
2 

42 
17 
-1 
4 
5 
1 

12 
9 
2 
1 
1 

Table 1: Detailed data for scheduling example 

- 
cl 

A 
A 
A 
B 
A 
A 
A 
A 
B 
B 
A 
B 
B 
B 
A 
A 
A 
B 
B 
B 
B 
B 
B 
A 
A 
A 
B 
B 
A 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
B 
A 
A 

- 
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So2 = { i  E SO : B; < TI and E; + t ;  > TI} 
SO3 = { i  E SO : Bi 2 TI} 

Note in the above that B, and t ,  are the beginning 
time and processing time, respectively ofjob i ( i  E SO). 
Jobs belonging to Sol would already be processed by 
TI and pose no problem. Jobs belonging to 5’02 would 
be undergoing processing at time TI whereas jobs in 
So3 are not even initiated by time TI. The reschedul- 
ing that we need to do will therefore include all jobs 
in So3 and S1 and possibly SOZ. Whether or not we 
reschedule jobs in So2 depends on whether we prefer 
to preempt the jobs in So2 at time TI or we prefer 
to wait until the instant at  which all jobs in So2 are 
processed. In the former case, the jobs rescheduled 
belong to the set So2 U So3 U SI, the rescheduling is 
done starting from t = TI, and certain machine time 
and possibly materials are wasted. In the latter case, 
the jobs rescheduled belong to the set S03US1, the 
rescheduling is done at  t = TI + To2 where To2 is the 
time needed for completing the jobs already initiated, 
and a higher weighted tardiness is to be expected. The 
rescheduling is again done using the LR algorithm of 
[9]. The above procedure is repeated at  the time in- 
stants Tz, T3, . . . , T,,. 

3.1 Numerical Example 
Consider the raw material arrival data given in Table 
2. Recall that the 89 jobs specified in Table 1 have 
to be scheduled on to four machines. We first obtain 
the schedule, using the LR algorithm [9], for all jobs 
in the set SO (see Table 2). At time t = 10, raw ma- 
terial for jobs in S1 arrives and rescheduling becomes 
necessary. Assuming that we wait until all jobs that 
are already initiated at  time t = 10 to be completed, 
the rescheduling is done only at t = 18. - 

Ml 

MZ 

M3 

M4 

- 
Table 3: Final sequencing of jobs taking into account 

delayed availability of raw material 

Table 3 shows the final schedule for all the jobs taking 
into account the raw material arrival sequence in Table 

2. From Table 3, we note the following. Jobs 30 and 63 
which belong to S1 are scheduled immediately due to 
their high weights. Jobs 62, 76, and 84 in S2 are found 
to be delayed because of their late due dates. Since 
raw material for jobs in 5’4 arrive only at t = 100, the 
four machines will have to be idle starting from t = 85 
onwards, until t = 100. 

4 Scrapping and Reworking of 
Jobs 

Quality control considerations entail inspection of pro- 
cessed jobs at  frequent intervals to verify if the quality 
is acceptable. A typical inspection operation can have 
three outcomes: accept, reject, or rework. In case it 
is decided that a finished part is to be rejected or re- 
worked, rescheduling becomes necessary. We propose 
the following scheme to handle such situations. 

Assume that inspection operations are carried out 
at time instants TI, Tz, . . . , T, . At time TI , all parts 
processed until that time are inspected and parts to be 
rejected and parts to be reworked along with rework- 
ing times are decided. Rescheduling is done using the 
LR algorithm so as to include the parts identified for 
rejection and reworking. The due dates and weights of 
these parts can be assumed to be the original ones. If 
S is the set of all jobs; SI, the set of jobs processed by 
time Tl; and S, the set of jobs identified for rejection 
or reworking at  Tl, then the set of jobs rescheduled at  
TI will be ( S  - SI) US,. The procedure is repeated 
at  all inspection epochs and we thus have an on-line 
procedure to handle scrapping and reworking of jobs. 

4.1 Numerical Example 

Table 4 shows a particular inspection program for the 
89-job system of Table 1. There are three inspection 
epochs, Tl,T2, and T3. At the epoch TI = 20, all jobs 
processed until then are inspected and it is found that 
job 16 is to be rejected and job 20 is to be reworked. 
Thus the reworking time for job 16 is 2 (original pro- 
cessing time = 2). The reworking time for job 20 is 
decided to be 7 (original processing time = 10). The 
rescheduling done at this epoch will therefore include 
these two jobs. Similarly, rescheduling is done as per 
the data in Table 4. Table 5 shows the overall schedule 
for all the 89 jobs, taking into account the scrapping 
and reworking. We find that job 20 is reworked im- 
mediately whereas job 16 is postponed by a significant 
amount. 
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Epoch 
20 
20 
50 
50 
50 
50 
150 
150 
150 
150 

i 
16 
20 
9 

49 
17 
23 
10 
35 
60 
26 

- Time 
2 
7 
3 
4 
1 
3 
6 
5 
8 
9 

Table 4: Data for scrapping and reworking of jobs 
- 
36 
29 
49 
55 
83 
74 
31 
59 
56 
17 
50 
25 - 

- 
79 
87 
62 

6 
51 
75 
30 

3 
82 
63 
34 
24 - 

- 
14 
22 
16 

1 
12 
61 
41 
20 
23 

5 
72 
60 - 

85 

- 
7 

17 

16 
44 
60 
11 
23 
70 
80 
66 

- 
13 
38 

58 
81 

49 
46 
35 
86 
28 

- 

10 

39 

Table 5: Final sequencing taking into account reworking 
and scrapping of jobs. Bold faced jobs indicate scrapped 

or reworked parts. 

5 Effect of Set-ups in a Multi- 
class Production System 

In a multiclass production system, switchover times 
or set-up times can have a significant effect on the 
way parts are scheduled. Set-up costs would add a 
new dimension to the scheduling problem addressed 
by the LR algorithm [9] and incorporating set-up costs 
in the objective function will make the approach non- 
decomposable. Furthermore, the subproblems are not 
mutually independent any more, as jobs processed be- 
tween successive set ups necessarily belong to the same 
class. 

Assuming identical parallel machines to be avail- 
able, we propose the following methodology for incor- 
poratingset up operations in the final schedules. First, 
the LR algorithm is used to  schedule the given set of 
jobs in the available machines. This schedule will give 
a particular sequence of jobs on each machine. Let 
Jzl , Jz,, . . . , Jz, be the sequence of jobs obtained for 
a specific machine. Let us assume these jobs belong 
to C different classes and when the machine switches 
over from one job class to another, it incurs a set-up 

cost and also a set up time. The schedule Jzl , . . . , Jz, , 
is nearly optimal if set-ups are not included. However 
if the same sequence is used and we. include the set 
up costs, the resulting schedule can be very inefficient 
due to frequent changeovers. Our idea is to group the 
jobs in the sequence Jz, , . . . , J., , in a suitable way, 
without disturbing the sequence, but at  the same time 
minimize the total cost which will be the sum of the 
weighted tardiness and set-up cost. 

We illustrate our approach by viewing the 89-jobs 
of Table 1 as belonging to two different classes, say 
A and B. The class information is shown in Table 1 .  
We have used the following criterion for classifying the 
jobs: jobs with processing time 1 or 2 are grouped as 
class A jobs and the rest of the jobs are designated as 
class B jobs. We also assume that the switchover time 
from A to B is 6 units and that from B to A is 4 units. 

Initially, the 89 jobs are scheduled using the LR al- 
gorithm onto the 4 machines. Let us look at  the sched- 
ule for a particular machine. Let Jal, Ja2,. . . , Jan, 
be the class A jobs in this schedule (in the same se- 
quence as they appear in the schedule). Similarly, let 
Jbl, Jb2, * .  . , Jbnb be the sequence of class B jobs in the 
schedule. First, we determine a range of suitable val- 
ues for the number of switchovers using considerations 
such as: 

1. Too many switchovers will make the set up costs 
dominate over the tardiness costs. 

2.  Too few switchovers will make the tardiness costs 
of delayed jobs substantial. 

3.  In a given set up, it is a good idea to process at  
least as many jobs having a total processing time 
equal to the set-up time. 

Having chosen a certain number of switchovers, say s, 
we first look at  the schedule having equal batch sizes 
for class A jobs and equal batch sizes for class B jobs. 
For example, in the above case, the batch size for class 
A is chosen as and that for class B as %. Calling 
qa and q b  as the batch sizes for A and B, the sequence 
will look like one of the following: 

Jal , . . . , Jag. ,switch, Jb, , ' . . , Jbqb, switch,. . 

Jb,, . . . , Jb,, , switch, Jal,. . . , Jag,, switch, . . . 
The objective function for such a sequence can be 

easily evaluated. The position of switch can now be 
changed by one or more positions to the left or right 
in a systematic way and in each case, the total cost 
of the resulting schedule can be evaluated. The pro- 
cedure can be repeated until changes in the total cost 
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keep decreasing and become negligible. This method- 
ology can be repeated for other appropriate values of 
s (number of switchovers). Schedules with set-ups can 
be obtained for other machines in an identical way. 

5.1 Numerical Example 
For the input data in Table 1, an LR schedule was 
obtained for each of the four machines. Assuming a 
switchover time of 6(4) units for a change from class A 
(class B) to class B (class A), a schedule with set-ups 
was obtained for each of the four machines. Table 6 
shows the resulting schedules. 
- 
MI 

Mz 

M3 

M4 

- 
13 
72 
60 
14 
54 

15 
9 

61 
27 
46 
68 - 

- 
21 
78 

41 
84 

45 
38 
33 
89 
77 

- 
16 
57 

10 
67 

49 
29 
70 
88 
44 

- 
58 
28 

32 
81 

63 
87 

50 
82 

- 
86 
56 

11 
8 

80 
47 

52 
37 

- 
83 
39 

48 
40 

18 
22 

65 
75 

- 
Table 6: Final sequencing taking into account set-ups 

6 Summary and Future Work 
Three extensions have been proposed in this paper to 
the Lagrangian relaxation based scheduling algorithm 
of Luh, Hoitomt, Max, and Pattipati [9], to address 
real-world features such as stochastic availability of 
raw material, scrapping and reworking of parts, and 
existence of significant set-up costs. The extensions 
proposed can be implemented easily. Numerical ex- 
periments on a 89-Job system have shown that these 
real-world features can often alter the original sched- 
ules in a significant way. 

The issue of addressing the set-up problem needs 
to be examined in more detail. What we have pro- 
vided is an efficient scheme for scheduling a two class 
production system with set-up times. The method 
needs to be extended to a multiclass system. A hy- 
brid methodology that uses simulated annealing and 
Lagrangian relaxation has recently been developed to 
handle the set-up problem in systems with three or 
more job classes [l l] .  Other important questions in 
this context that need to be explored are: How to 
choose classes? How to choose batch sizes? Also, 
future work is needed to explore these extensions to 
multi-operation models and job shops. 
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