
Real-World Extensions to a Production Scheduling Algorithm
Based on Lagrangian Relaxation

Y. Narahari
Computer Science and Automation

Indian Institute of Science
Bangalore 560 012 - INDIA

Abstract
In this article, we develop three e f lc ient extensions
t o a recent production scheduling algorithm based on
Lagrangian relaxation [9]. These extensions handle
the following real-world features:

0 stochastic availability of raw material,

0 reworking and scrapping of parts , and

0 incorporating set-up costs and set-up t imes in the
Scheduling of multiclass manufacturing sys tems

The f irs t t w o extensions yield on-lane algorithms which
are illustrated using a 89-job scheduling problem. The
t h i d extension uses an algorithmic procedure t o inserl
switchovers t o obtain a good schedule and is illustrated
for a two-class , 89-job scheduling problem.

1 Introduction
Discrete activity scheduling [2, 3, 7 , 121 is probably the
most important issue in the design and operation of
manufacturing systems. This paper is concerned with
deterministic machine scheduling in a system compris-
ing parallel identical machines. We present three real-
world extensions to a recent production scheduling al-
gorithm based on Lagrangian relaxation [9]. The ex-
tensions handle the following real-world features:

1. Stochastic availability of raw material

2. Reworking and scrapping of parts

3. Switchover costs and set-up times encountered in
the scheduling of multiclass manufacturing sys-
tems.

These extensions are illustrated for a detailed 89-job
example adapted from a real-world problem presented
in [9].

Sundar Ram Vedula
Mechanical Engineering

Indian Institute of Technology
Madras 600 036 - INDIA

1.1 Schedule Generation Using La-
grangian Relaxation

The theory of sequencing and scheduling, more than
any other area in Operations Research, is character-
ized by a virtually unlimited number of problem types
[2, 71. Recently, in the area of deterministic ma-
chine scheduling, scheduling algorithms based on La-
grangian relaxation [l, 81 have been proposed and have
proved to be highly effective in real-world factory situ-
ations. These Lagrangian relaxation-based algorithms
have been reviewed in [6]. Luh, Hoitomt, Max, and
Pattipati [9] presented the first of these algorithms for
the case of scheduling single operation jobs on parallel
identical machines. Later, the approach was extended
to the case of multiple-operation jobs with precedence
constraints [5]. More recently, the approach has been
extended to general job shop scheduling problems [4,
61. The algorithms use a decomposable objective func-
tion such as the total weighted tardiness and obtain
the solution by solving independent, job-level sub-
problems.

We now give a brief description of the basic tech-
nique that we employ in this paper. This technique
is due to Luh, Hoitomt, Max, and Pattipati [9]. The
method is used for the nonpreemptive discrete time
scheduling of independent jobs on identical, parallel
machines and is based on the Lagrangian relaxation
algorithm [1,8]. The input variables are:
N : Number of jobs
K : Time horizon for scheduling
w1, . . . W N : Weights (relative importance) of jobs
t l , . . . , t N : Processing times of the jobs
D1, . . . , DN : Due dates of the jobs
M I , . . . , M K : Numbers of machines available at dis-
crete time instants 1 , 2 , . . . , K , respectively.

The decision variables are B1 , . . . , BN , the begin-
ning times for the jobs. Now, define, for i = 1 , . . . , N ,
and k = l , . . . , K ,
6 i k = 1 if job i is undergoing processing at time k

1050-4729/94 $03.00 0 1994 IEEE
3167

b j k = 0 if job i is not undergoing processing at time k
Ci = Completion time of job i
Ti = mat(0,Ci - Di}

function of interest is
Ti represents the tardiness of job i. The objective

N
J = CW~Z

i=l

which is the weighted tardiness criterion. This cri-
terion takes into account the relative importance of
jobs, and the importance of meeting due dates. The
scheduling problem can now be stated as follows.

N
min J with J = X w i Z
{BSI i=l

subject to capacity constraints:

N
6 . t k - < Mh,k= l , . . . , K

i=l

and processing time requirements:

The problem is solved by maximizing the dual func-
tion which is obtained by using a set of multipliers to
relax the capacity constraints. The dual problem can
be decomposed into N subproblems, one for each job.
The computational complexity of each subproblem is
linear in K . Using these N solutions, the dual problem
is solved using a subgradient method [lo]. The stop-
ping criterion used in the above subgradient method
does not always yield a feasible schedule, in the sense
that the capacity constraints might be violated for a
few time slots [9]. To construct a feasible schedule, a
greedy heuristic based on the list scheduling concept
is used.

1.2 Extensions Proposed
In this paper, we consider the LR (Lagrangian relax-
ation) approach presented in [9] and develop exten-
sions to address three real-world features in schedul-
ing. These features are diffferent from the extensions
to the algorithm presented in [9].

The first extension proposed handles delayed or
stochastic availability of raw material. Since raw ma-
terials are usually procured from sources external to
the machine shop, one is never sure unless the raw
material is in hand. The LR algorithm of Luh et a1
[9] handles in a limited way the feature of delayed

availability of raw material, by specifying earliest start
times, which are however assumed to be known in ad-
vance. In a stochastic environment where the raw ma-
terial keeps arriving into the shop at time instants not
known in advance, the earliest start times cannot cap-
ture fully the situation.

The second extension seeks to address the
rescheduling problem that arises when processed parts
are either rejected or sent for reworking after periodic
inspections. Parts identified for reworking cause extra
load on the system whereas every rejected part entails
complete reprocessing and also material waste. As a
result, the originally drawn schedule may not be the
best any more and rescheduling becomes necessary.

The problem of set-ups in multiclass manufacturing
system is addressed by the third extension we propose.
Our method enables set-up costs to be included in the
scheduling procedure. For this, we first obtain a sched-
ule without set-up operations (using the LR-algorithm
[9]) and modify this schedule using a simple heuristic
algorithm, to include the effect of set-up times and
set-up costs.

The paper is organized as follows. In Section 2, we
present the input data for a 89-job scheduling prob-
lem, which is used for illustrating the three extensions
proposed. This data is adapted from a real-world sit-
uation described in [9]. The three extensions and rele-
vant numerical experimentation are presented in Sec-
tions 3, 4, and 5 .

2 Data for Scheduling Example

Table 1 shows the input data for a 89-Job system. This
data is the same as in [9] and is a real-world data
taken from the tool and die workcenter of Pratt and
Whitney’s Development operations shop. We assume
that the machine shop has 4 identical machines (the
data in [9] has 42 machines). The first column shows
the job number; the second column, the job weight;
the third column, the job processing ,time; and the
fourth column, the job due date. The fifth column
is a job class column introduced in this paper, spe-
cially for discussing the set-up problem in Section 5. In
the three sections that follow, we apply the proposed
extensions to the above data by introducing specific
changes needed.

3168

' I

n
Time instant Value of

TO 0
9-1 10
T2 25
T3 28
T4 100

2
-
1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89 -

si
so

{ 5,9,21,30,34,41,63 }
{62,76,84 }

{3,43,65,81,82 }
{13,25,68,71,75,80 }

W i

1
9
1
1
1
1
6
1
5
1
1
1
6
1
1
9
1
1
1
1
1
6
1
1
1
1
1
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
1
1

-

-

-
t i

1
1
1
2
3
1
5
1
1
1
1
3
8
2
2
1

11
16
3
3
1
5
1
2
1
2
1
4
3
1
5
6
1
3
8

10
8
4
3
1
3
2

12
2
2

-

-

-

D i

0
12
1

-2
9
8

19
7
1
5
1
0

60
-1
0

-1
11
24
25
20

2
10
7
7
8
7
9
1
2

10
5
7

10
7

10
20
11
15
2

-1
10
4
9
1
0

-

-

-
cl

A
A
A
A
B
A
B
A
A
A
A
B
B
A
A
A
B
B
B
B
A
B
A
A
A
A
A
B
B
A
B
B
A
B
B
B
B
B
B
A
B
A
B
A
A

-

-

-

2

-
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88

-
W i

1
1
1
1
1
1
1
1
1
9
1
1
1
1
6
1
1

16
1
1
1
1
1
1
1
1
1
1
1
1
1

16
1
1
1
1
1
1
1
6
1
1
1
1

-

-
t i

2
1
1
4
1
2
1
2
3

10
2
7
9
3
1
1
2
5
3
4
3
3
3
1
2
1
3
3
2

20
4
5
3

15
16
3
4
3
3
3
3
3
2
2

-

-

D i -
15
13
-3
0
7

13
2

-1
0
9
8
3
8
3
2
7

15
2

24
18

2
7
2
7
7

10
2
9

-1
24

9
5
2

42
17
-1
4
5
1

12
9
2
1
1

Table 1: Detailed data for scheduling example

-
cl

A
A
A
B
A
A
A
A
B
B
A
B
B
B
A
A
A
B
B
B
B
B
B
A
A
A
B
B
A
B
B
B
B
B
B
B
B
B
B
B
B
B
A
A

-

3169

So2 = { i E SO : B; < TI and E; + t ; > TI}
SO3 = { i E SO : Bi 2 TI}

Note in the above that B, and t , are the beginning
time and processing time, respectively ofjob i (i E SO).
Jobs belonging to Sol would already be processed by
TI and pose no problem. Jobs belonging to 5’02 would
be undergoing processing at time TI whereas jobs in
So3 are not even initiated by time TI. The reschedul-
ing that we need to do will therefore include all jobs
in So3 and S1 and possibly SOZ. Whether or not we
reschedule jobs in So2 depends on whether we prefer
to preempt the jobs in So2 at time TI or we prefer
to wait until the instant at which all jobs in So2 are
processed. In the former case, the jobs rescheduled
belong to the set So2 U So3 U SI, the rescheduling is
done starting from t = TI, and certain machine time
and possibly materials are wasted. In the latter case,
the jobs rescheduled belong to the set S03US1, the
rescheduling is done at t = TI + To2 where To2 is the
time needed for completing the jobs already initiated,
and a higher weighted tardiness is to be expected. The
rescheduling is again done using the LR algorithm of
[9]. The above procedure is repeated at the time in-
stants Tz, T3, . . . , T,,.

3.1 Numerical Example
Consider the raw material arrival data given in Table
2. Recall that the 89 jobs specified in Table 1 have
to be scheduled on to four machines. We first obtain
the schedule, using the LR algorithm [9], for all jobs
in the set SO (see Table 2). At time t = 10, raw ma-
terial for jobs in S1 arrives and rescheduling becomes
necessary. Assuming that we wait until all jobs that
are already initiated at time t = 10 to be completed,
the rescheduling is done only at t = 18. -

Ml

MZ

M3

M4

-
Table 3: Final sequencing of jobs taking into account

delayed availability of raw material

Table 3 shows the final schedule for all the jobs taking
into account the raw material arrival sequence in Table

2. From Table 3, we note the following. Jobs 30 and 63
which belong to S1 are scheduled immediately due to
their high weights. Jobs 62, 76, and 84 in S2 are found
to be delayed because of their late due dates. Since
raw material for jobs in 5’4 arrive only at t = 100, the
four machines will have to be idle starting from t = 85
onwards, until t = 100.

4 Scrapping and Reworking of
Jobs

Quality control considerations entail inspection of pro-
cessed jobs at frequent intervals to verify if the quality
is acceptable. A typical inspection operation can have
three outcomes: accept, reject, or rework. In case it
is decided that a finished part is to be rejected or re-
worked, rescheduling becomes necessary. We propose
the following scheme to handle such situations.

Assume that inspection operations are carried out
at time instants TI, Tz, . . . , T, . At time TI , all parts
processed until that time are inspected and parts to be
rejected and parts to be reworked along with rework-
ing times are decided. Rescheduling is done using the
LR algorithm so as to include the parts identified for
rejection and reworking. The due dates and weights of
these parts can be assumed to be the original ones. If
S is the set of all jobs; SI, the set of jobs processed by
time Tl; and S, the set of jobs identified for rejection
or reworking at Tl, then the set of jobs rescheduled at
TI will be (S - SI) US,. The procedure is repeated
at all inspection epochs and we thus have an on-line
procedure to handle scrapping and reworking of jobs.

4.1 Numerical Example

Table 4 shows a particular inspection program for the
89-job system of Table 1. There are three inspection
epochs, Tl,T2, and T3. At the epoch TI = 20, all jobs
processed until then are inspected and it is found that
job 16 is to be rejected and job 20 is to be reworked.
Thus the reworking time for job 16 is 2 (original pro-
cessing time = 2). The reworking time for job 20 is
decided to be 7 (original processing time = 10). The
rescheduling done at this epoch will therefore include
these two jobs. Similarly, rescheduling is done as per
the data in Table 4. Table 5 shows the overall schedule
for all the 89 jobs, taking into account the scrapping
and reworking. We find that job 20 is reworked im-
mediately whereas job 16 is postponed by a significant
amount.

3170

Epoch
20
20
50
50
50
50
150
150
150
150

i
16
20
9

49
17
23
10
35
60
26

- Time
2
7
3
4
1
3
6
5
8
9

Table 4: Data for scrapping and reworking of jobs
-
36
29
49
55
83
74
31
59
56
17
50
25 -

-
79
87
62

6
51
75
30

3
82
63
34
24 -

-
14
22
16

1
12
61
41
20
23

5
72
60 -

85

-
7

17

16
44
60
11
23
70
80
66

-
13
38

58
81

49
46
35
86
28

-

10

39

Table 5: Final sequencing taking into account reworking
and scrapping of jobs. Bold faced jobs indicate scrapped

or reworked parts.

5 Effect of Set-ups in a Multi-
class Production System

In a multiclass production system, switchover times
or set-up times can have a significant effect on the
way parts are scheduled. Set-up costs would add a
new dimension to the scheduling problem addressed
by the LR algorithm [9] and incorporating set-up costs
in the objective function will make the approach non-
decomposable. Furthermore, the subproblems are not
mutually independent any more, as jobs processed be-
tween successive set ups necessarily belong to the same
class.

Assuming identical parallel machines to be avail-
able, we propose the following methodology for incor-
poratingset up operations in the final schedules. First,
the LR algorithm is used to schedule the given set of
jobs in the available machines. This schedule will give
a particular sequence of jobs on each machine. Let
Jzl , Jz,, . . . , Jz, be the sequence of jobs obtained for
a specific machine. Let us assume these jobs belong
to C different classes and when the machine switches
over from one job class to another, it incurs a set-up

cost and also a set up time. The schedule Jzl , . . . , Jz, ,
is nearly optimal if set-ups are not included. However
if the same sequence is used and we. include the set
up costs, the resulting schedule can be very inefficient
due to frequent changeovers. Our idea is to group the
jobs in the sequence Jz, , . . . , J., , in a suitable way,
without disturbing the sequence, but at the same time
minimize the total cost which will be the sum of the
weighted tardiness and set-up cost.

We illustrate our approach by viewing the 89-jobs
of Table 1 as belonging to two different classes, say
A and B. The class information is shown in Table 1 .
We have used the following criterion for classifying the
jobs: jobs with processing time 1 or 2 are grouped as
class A jobs and the rest of the jobs are designated as
class B jobs. We also assume that the switchover time
from A to B is 6 units and that from B to A is 4 units.

Initially, the 89 jobs are scheduled using the LR al-
gorithm onto the 4 machines. Let us look at the sched-
ule for a particular machine. Let Jal, Ja2,. . . , Jan,
be the class A jobs in this schedule (in the same se-
quence as they appear in the schedule). Similarly, let
Jbl, Jb2, * . . , Jbnb be the sequence of class B jobs in the
schedule. First, we determine a range of suitable val-
ues for the number of switchovers using considerations
such as:

1. Too many switchovers will make the set up costs
dominate over the tardiness costs.

2. Too few switchovers will make the tardiness costs
of delayed jobs substantial.

3. In a given set up, it is a good idea to process at
least as many jobs having a total processing time
equal to the set-up time.

Having chosen a certain number of switchovers, say s,
we first look at the schedule having equal batch sizes
for class A jobs and equal batch sizes for class B jobs.
For example, in the above case, the batch size for class
A is chosen as and that for class B as %. Calling
qa and q b as the batch sizes for A and B, the sequence
will look like one of the following:

Jal , . . . , Jag. ,switch, Jb, , ' . . , Jbqb, switch,. .

Jb,, . . . , Jb,, , switch, Jal,. . . , Jag,, switch, . . .
The objective function for such a sequence can be

easily evaluated. The position of switch can now be
changed by one or more positions to the left or right
in a systematic way and in each case, the total cost
of the resulting schedule can be evaluated. The pro-
cedure can be repeated until changes in the total cost

3171

keep decreasing and become negligible. This method-
ology can be repeated for other appropriate values of
s (number of switchovers). Schedules with set-ups can
be obtained for other machines in an identical way.

5.1 Numerical Example
For the input data in Table 1, an LR schedule was
obtained for each of the four machines. Assuming a
switchover time of 6(4) units for a change from class A
(class B) to class B (class A), a schedule with set-ups
was obtained for each of the four machines. Table 6
shows the resulting schedules.
-
MI

Mz

M3

M4

-
13
72
60
14
54

15
9

61
27
46
68 -

-
21
78

41
84

45
38
33
89
77

-
16
57

10
67

49
29
70
88
44

-
58
28

32
81

63
87

50
82

-
86
56

11
8

80
47

52
37

-
83
39

48
40

18
22

65
75

-
Table 6: Final sequencing taking into account set-ups

6 Summary and Future Work
Three extensions have been proposed in this paper to
the Lagrangian relaxation based scheduling algorithm
of Luh, Hoitomt, Max, and Pattipati [9], to address
real-world features such as stochastic availability of
raw material, scrapping and reworking of parts, and
existence of significant set-up costs. The extensions
proposed can be implemented easily. Numerical ex-
periments on a 89-Job system have shown that these
real-world features can often alter the original sched-
ules in a significant way.

The issue of addressing the set-up problem needs
to be examined in more detail. What we have pro-
vided is an efficient scheme for scheduling a two class
production system with set-up times. The method
needs to be extended to a multiclass system. A hy-
brid methodology that uses simulated annealing and
Lagrangian relaxation has recently been developed to
handle the set-up problem in systems with three or
more job classes [l l] . Other important questions in
this context that need to be explored are: How to
choose classes? How to choose batch sizes? Also,
future work is needed to explore these extensions to
multi-operation models and job shops.

References
1. M.L. Fisher, Lagrangian Relaxation Method for Solv-

ing Integer Programming Problems. Management
Science, Volume 27, 1981, pp. 1-18.

2. S. French, Squenching and Scheduling. Wiley, New
York, 1982.

3. S.B. Gershwin, Hierarchical Flow Control: A Frame-
work for Scheduling and Planning Discrete Events in
Manufacturing Systems. Proceedings of the IEEE,
Volume 77, Number 1, January 1989, pp. 195-209.

4. D.J. Hoitomt, P.B. Luh, and K.R. Pattipati, Job Shop
Scheduling. Proceedings of First International Con-
ference on Automation Technology, Taipei, Taiwan,

5. D.J. Hoitomt, P.B. Luh, E. Max, and K.R. Pattipati,
Scheduling Jobs with Simple Precedence Constraints
on Parallel Machines. Chapter 20, in: Y.C. Ho (Edi-
tor), Discrete Event Systems, IEEE Press, 1991.

6. D.J. Hoitomt, P.B. Luh, and K.R. Pattipati, A Prac-
tical Approach to Job Shop Scheduling Problems, To
appear in: IEEE Transactions on Robotics and Au-
tomation, 1993.

7. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan,
and D.B. Shmoys, Sequencing and Scheduling: Al-
gorithms and Complexity. Report No. ES- R8909,
Centre for Mathematics and Computer Science, Am-
sterdam, November 1989.

8. D.G. Luenberger, Linear and Non-linear Program-
ming. Second Edition: Addison-Wesley, Reading,
Massachusetts, 1984.

9. P. Luh, D. Hoitomt, E. Max, and K. Pattipati, Sched-
ule Generation and Reconfiguration for Parallel Ma-
chines. IEEE Transactions on Robotics and Automa-
tion, Volume 6, Number 6, December 1990, pp. 687-
696.

10. B.T. Polyak, Minimization of Unsmooth Functionals.
USSR Computational Mathematics and Mathematical
Physics, Volume 9, 1969, pp. 14-29.

11. R. Srigopal, Scheduling Multiclass Production Facil-
ities using Lagrangian Relazation. Master’s Thesis,
Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, January 1994.

12. N. Viswanadham and Y. Narahari, Performance Mod-
eling of Automated Manufacturing Systems. Prentice
Hall, Englewood Cliffs, New Jersey, 1992.

July 1990, pp. 565-574.

3 172

