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Abstract

Electronic exchanges are double-sided marketplaces
that allow multiple buyers to trade with multiple sellers,
with aggregation of demand and supply across the bids to
maximize the revenue in the market. Two important issues
in the design of exchanges are (1) trade determination (de-
termining the number of goods traded between any buyer-
seller pair) and (2) pricing. In this paper we address the
trade determination issue for one-shot, multi-attribute ex-
changes that trade multiple units of the same good. The
bids are configurable with separable additive price func-
tions over the attributes and each function is continuous and
piecewise linear. We model trade determination as mixed
integer programming problems for different possible bid
structures and show that even in two-attribute exchanges,
trade determination is N'P-hard for certain bid structures.
We also make some observations on the pricing issues that
are closely related to the mixed integer formulations.

1 Introduction

Markets play a central role in any economy and facil-
itate exchange of information, goods, services, and pay-
ments. They are intended to create value for buyers, sell-
ers, and society at large. Markets have three main func-
tions [2]: (1) matching buyers to sellers; (2) facilitating ex-
change of information, goods, services, and payments asso-
ciated with a market transaction; and (3) providing an in-
stitutional infrastructure. Internet-based markets leverage
information technology to perform these functions with in-
creased effectiveness and reduced transaction costs, lead-
ing to more efficient, friction-free markets. Exchanges are
double-sided marketplaces where both buyers and sellers
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submit bids for trading. We refer to sellers’ bids as offers
whenever it is required to differentiate them from that of
buyers. The exchanges differ in functionality with respect
to timing of clearing, number of bid submissions, pricing,
aggregation, and the varieties of goods traded. Iferative ex-
changes iterate the bid submission, clearing, and informa-
tion disclosure to the bidders. The clearing of the exchange
is continuous if trading is triggered by the arrival of bids
and periodic if trading occurs after a prespecified interval
of time. In one-shot exchanges, agents submit sealed bids
once during the specified bidding interval and the market is
cleared after the termination of the bidding time. Based on
the pricing scheme, the exchanges can be uniformly-priced
or discriminately-priced. In uniformly-priced exchanges,
agents pay the same price for the same good whereas in
discriminatory-pricing exchanges agents are differentially
priced. Homogeneous exchanges trade multiple units of a
single good, combinatorial exchanges allow bids for bun-
dles of different goods, and multi-attribute exchanges al-
low bids that specify different attributes in addition to quan-
tity and price for goods. Based on the aggregation allowed
among the bids, the exchanges can be sell-side, buy-side, or
completely aggregated [15]. The continuous double auction
markets for stock trading are continuous, discriminately-
priced, homogeneous exchanges whereas the call markets
used for the daily opening on the New York, American,
and Tokyo Stock Exchanges [12] are one-shot, uniformly-
priced, homogeneous, completely aggregated exchanges.
The two core problems in the design of an exchange are
allocation and pricing [15]. We call the allocation prob-
lem as the trade determination problem (TDP), which de-
termines the quantity of goods traded between every pair
of buyers and sellers. In this paper, our interest is in the
TDP for one-shot, multi-attribute, homogeneous exchanges
with configurable bids. The functional form of configurable
bids considered in this paper corresponds to separable addi-
tive functions over the attributes with each function contin-
uous and piecewise linear. We architect a set of exchanges
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for different possible functional forms and bid structures,
and model their TDPs as mixed integer programming (MIP)
problems. We also show that trade determination is N P-
hard for certain bid structures even in a two-attribute ex-
change.

The rest of the paper is organized as follows. Related lit-
erature is discussed in Section 2. In Section 3, we propose
a price-quantity two-attribute exchange, where the price is
given as a continuous, piecewise linear function of the quan-
tity. MIPs for varying price functions and bid patterns are
presented. Section 3 extends the models for multiple at-
tributes. Though the focus of the paper is on the TDP,
we highlight certain pricing issues in Section 4 as they are
closely related with the TDP. Conclusions and future re-
search are noted in Section 5.

2 Related Literature

Multi-dimensional markets have become popular with
the advent of Internet based marketplaces [3], with applica-
tions varying from procurement in private marketplaces [1]
to tourism [4]. Much of the literature is on multi-attribute
auctions, which are single sided market mechanisms with
a single auctioneer and multiple bidders. The auctioneer
usually has a value or utility function for each attribute
and weights that capture the relative importance of the at-
tributes. Using a scoring function, the auctioneer quanti-
fies each bid and selects the best that satisfies his require-
ments. The scoring function generally used is the additive
scoring function derived from multi-attribute utility theory
[10]. The bidding language used in the above auctions are
(attribute, value) pairs. To further automate negotiations,
configurable bids were used in [5]. With configurable bids,
the auctioneer can configure the product or service offered
by the bidder. Configurable bids express price as a function
of the attributes, which enables the auctioneer to choose the
best configuration that suits his price.

Multi-attribute exchanges (MAX) are a class of double-
sided market mechanisms with both buyers and sellers post-
ing multi-attribute bids. The scoring function technique
with (attribute, value) bidding language is not a feasible
extension to MAX. This is because deriving a single scor-
ing function that is acceptable for both buyers and sellers
is not possible since their interests are generally conflicting.
The more suitable bidding language is that of configurable
bids. A MAX mechanism with configurable bids where
the price is given as a function of quantity and lead time
was proposed in [8]. Computational aspects of clearing ho-
mogeneous exchanges were discussed in [7] and those of
combinatorial exchanges were discussed in [17, 16, 11]. In
this paper we focus on MAX mechanisms with configurable
bids that are separable and additive functions of attributes,
where each function is a continuous piecewise linear func-
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Figure 1. Piecewise linear concave P,
tion.

3 Two-attribute Exchanges

The simplest case of a multi-attribute exchange is a two-
attribute exchange (TAX) with price and quantity as at-
tributes. A configurable bid for this exchange would ex-
press price as a function of quantity. The bid submitted by
buyer i is a quantity-price pair ([b;, b;], P;), which means
that the buyer is willing to trade any quantity in the range
[b;, b;] at the price given by the function P;. The price func-
tion P;, we consider, is a continuous piecewise linear func-
tion on [b;, b;] as shown in Figure 1. The price is the total
price (not the unit price) at which the buyer is willing to
trade as a function of quantity. The P; shown in Figure
1 can be compactly represented by tuples of break points

and slopes ((62,...,6¥7) (o}, ..., o) m;) where k(i)

(2

is the number of linear segments and m; is the price at
§9 = b, . The break points 89 = b, < 6} ... < Gf(z) =0
represent the points at which the function changes slope
and the corresponding slopes are decreasing (o} > o? >

> af(z)) to reflect negotiation of price over quan-
tity. The offers submitted by sellers ([a;,@;],Q;) with Q;
as a price function with [(j) linear segments, represented

by ((89,...,017), (8, ..
pretation (69 = a; < &j... < 6;(3) =a;, B} > B7 >
o> B;(J) and n; is the price at gj). Note that both P; and
(); are increasing concave functions. P; denotes the nego-
tiating behavior of buyer ¢ where he is willing to buy more
goods if the price is reduced and (); denotes the volume dis-
count strategy of seller j, where he is willing to reduce the
price if more goods are bought. In the following subsec-
tions we progressively develop four models of TAX from
the simplest case to more general ones and provide MIP
formulations for their respective TDPs.

. B;.(j ) ),nj) have the same inter-
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Sellers

Buyers

xq1=15
([15, 18], $15)

([10, 201, $10)
X5y =5

(IS, 81, $12)

@y =lLy,=12 =1
Volume Traded = 20, Surplus = $85

Sellers

Buyers

xq1=18
([15, 18], $15)

([10, 201, $10)

(5, 81, $12)

(b)y1=1,zl=1
Volume Traded = 18, Surplus = $90

Figure 2. More surplus with less nhumber of bids

3.1 TAX-1 (b = 0,a; = 0,k() = 1,1(j) = 1, Vi, )

The first model is the simplest of all with no lower
bounds on the quantity required and the price functions are
linear functions with slope «; for P; and §3; for () ;. Follow-
ing is the integer programming (IP) formulation for TDP
with the objective of maximizing the surplus in the market.

maXZ(ai Z Tij) — Z(ﬂj Z Tij) (D

1 JjEB; 7 iESj
subject to
JEB;
Z zi; < a@; Vj
i€S;
Tij € Zt VZ, ] € B;

The objective function maximizes the surplus generated
out of the trade. The decision variable z;; denotes the num-
ber of goods traded between buyer ¢ and seller j. The set
B; (S;) denotes the set of compatible offers (bids) for bid ¢
(offer j). This set defines which bid can trade with which
offer. For the current model, these sets hardly play any role
and their purpose will become clear in the subsequent mod-
els. One can easily see that the objective function is equiv-
alent to »°; ;(a; — Bj)z;; and the problem is a variant of
the transportation problem, which can be solved in polyno-
mial time using transportation algorithms [13]. The inte-
grality constraint z;; € Z* can be relaxed to z;; > 0, as
transportation algorithms always find integral z;; whenever
a; and b; are integers [13]. The objective function can be

altered to maximize the trade volume  , . z;; with the ex-

tra constraint 3, (a Y e, 21) > 3, (%5 Lies, i) 50
that the market does not run in deficit. This constraint can
be removed if we define B; = {j : o; — ; > 0} and

S; = {i: a; — f; > 0} and can be solved using transporta-
tion algorithms.

3.2 TAX-2 (k(i) = 1,1(j) = 1, ¥4, )

In TAX-2, the agents have non-zero lower bounds on
the quantity, i.e. the buyer (seller) is willing to trade any
quantity in range [b;, b;] ([a;,@;]) and nothing outside this
range. This requires additional 0-1 decision variables to ac-
cept/reject a bid for trading. The MIP formulation for the
TDP is as follows:

max » (yimitai Y @)=Y (zmi+8; Y wij) (2)
i J

JEB; i€S;
subject to
yib; < EjEBi xi; < yib; Vi 3
2j8; S Dlies; Tij S 205 Vi 4
x5 >0 Vi,j € B; )
yi €{0,1} Vi (6)
zj €{0,1} Vj 7N

The y; and z; are 0-1 variables that reject/select a bid or
an offer. When the 0-1 variables are set, the resulting prob-
lem is an interval transportation problem [13] that can be
solved using transportation algorithms. Due to this special
transportation structure, we have not constrained x;; to be
integers. The binary variables y; and z; are required for two
reasons. One, accepting all bids and offers may not maxi-
mize the value of (2) as shown in Figure 2. The attributes
of the bids in Figure 2 are quantity range and unit price:
for example, Bid 1 ([15, 18], $15) means that the buyer is
willing to buy any number of goods in the range [15, 18]
at unit price $15 and no goods outside this range. Figure

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE International Conference on E-Commerce (CEC’03)
0-7695-1969-5/03 $17.00 © 2003 |IEEE

Authorized licensed use limited to: INDIAN INSTITUTE OF SCIENCE. Downloaded on November 10, 2008 at 03:13 from IEEE Xplore. Restrictions apply.



Offer 1

(5, 10], $10)

X11= 10

([15, 201, $15)

Offer 2

(5, 101, $17)

Figure 3. Trade with negative surplus

2(a) shows the case when both bids are selected: total vol-
ume traded is x1; + 21 = 20 and the surplus generated is
15 x ($15—9$10) + 5 x (812 — $10) = $85. When only Bid
1 is selected (Figure 2(b)), total volume traded is z1; = 18
and the surplus generated is 18 x ($15 — $10) = $90. Thus
more surplus can be generated by selecting less number of
bids and by trading lower volumes. This phenomenon is
a variant of the more-for-less paradox [6] of transportation
problems, and more generally of linear programming prob-
lems. The paradox says that it is possible to send more flow
from supply to demand nodes at lower cost, even if all arc
costs are positive. The second reason for the binary deci-
sion variables is that the problem may be infeasible after
accepting all bids and offers. For the above problem to be
feasible, following inequalities need to be satisfied (assum-
ing that any bid can trade with any offer and vice versa):

S
2 J

Sazyn
7 i

Hence, 0-1 variables are required to judiciously select
bids and offers such that the problem is feasible and (2) is
maximized. This model is close to the MAX of [8], where
Benders’ Decomposition based solution technique is pro-
posed for solving the TDP. It is worth noting here that trades
with only positive surplus (o;; — 3; > 0) occur in TAX-1;
TAX-2 can have trades with negative surplus (even though
(2) can be positive) as shown in Figure 3. Bid I trades
five units with Offer 2 at a negative surplus of -$2 per unit
but the total surplus generated in the exchange is positive
(10 x ($15 — $10) + 5 x ($15 — $17) = $40).

Now we show that the decision version of TAX-2
(DTAX-2) is N'P-complete by reducing from capacitated
facility location problem (CFLP) [14] (thus TAX-2 is N'P-
hard).

Definition 1 (DTAX-2) We are given a set of bids B =
{([bs, bi], s, mi) }, a set of offers S = {([a;,a;], Bj,nj) }.

and a goal G. We are asked whether there exist B' C B,
S’ C S and assignment x;; > 0, such that

b, < Yjeswij < b Vie B (8)

a; < Yiew Ty < G VjES 9)
and =3 ;g m; dien 2jes (i Bj)xi; +
ZjES’ TLJ < G

Definition 2 (CFLP) We are given a set of facilities S, a
set of clients B and a goal G. Each facility j € S incurs a
fixed cost inj when opened and has a maximum capacity a;.
Each clienti € B has a demand b;. The unit cost of serving
Sfrom capacity j to client i is ¢;j. We are asked whether there
exists a set S' C S of facilities that can be opened and each
j € S' serving #;;(> 0) units to client i, such that

> &; =b VieB (10)
jes
Z i’ij < (Nlj Vj e S~’ (11
i€B’

Theorem 1 DTAX-2 is N'P-complete.

Proof: To show that DTAX-2 is in NP, we observe that
specifying a solution is to choose subsets B’ and S’, and
assign non-negative values to z;; Vi € B', j € S’. Given
such a solution, we can verify whether it meets our require-
ments in polynomial time. To show N P- hardness, we re-
duce an arbitrary CFLP instance to the following DTAX-2
instance:

e B=B,S=38, nj = nj,m; = M(>> 0, arbitrarily
large number);

e a; =0, @ =dj;, b; = b; = b, and (o — B;) = —éj;

o Setgoal G =G — Y,y my.

It is obvious that the above reduction can be done in
polynomial time. Let us show now that the reduction is
valid. Suppose there is a solution to CFLP instance, i.e.
there exists S’ C S and Z;; such that (10) and (11) are sat-
isfied and 3~ 5 715 + Y s 2 jes Giiij < G. Choose
S =9, x;j = & and B’ = B. This solution satisfies (8)
and (9), and satisfies the goal G:

Zzéiji’j—‘_zﬁj < G

i€eBjes’ jes
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= —Zmi—ZZ(ai—ﬂj)l’ij-f-an

i€B’ i€B’ jES jes

< — Z m; + é =G
i€B
So we have a solution to DTAX-2 instance. Now suppose
DTAX-2 instance has a solution, i.e. there exists S’ C S,
B' C B, and z;; > 0 satisfying (8) and (9), such that
=D ien Mi—iep 2jes (i—Bj)Tij+)_ e n; < G.
First we note that B' = B. Suppose B’ C B, then
- ZiEB’ m; — ZiEB’ Zjesl (az - /8])1'1'] + Zjesl n] <

G- > ic g i cannot be true as we have assumed m; = M
to be an arbitrarily large number. Now choose S’ = S,
B'" = B, and &;; = wx;;. This solution satisfies (10) and

(11), and satisfies the goal G-

=Y mi= Y > (i = B+ Y ny

ieB’ i€B’ jes' jes
< é - Z m;
i€eB
= Zzéijjij—i_zﬁj < G
i€eBjes jesr
So there is a solution to CFLP instance. [ |

In TAX-3, the agents have piecewise linear, concave
price functions with zero lower bounds on quantity. The
objective function is maximization of difference of two con-
cave functions. To model this as an MIP we need more 0-1
variables with extra regularity constraints. First let us con-
sider bids submitted by buyers. The bid i with k(¢) linear
segments is converted into the following k(3) different bids
each with a single linear price function.

([0,6; —6; ', af) r=1,...,k()

The contribution of the new bids to the objective function
is given by

12)

(13)

Z (af Z »"Ui(r),j)

r=1,..k(i)  JEB;

where x;(, ; are the new decision variables induced from
bid i, which have the same compatibility as 7. Let X,y =
> jeB: Ti(r),j denote the total number of goods traded with
bid i(r). The above transformation (12) of bid ¢ into k(i)
will be true only if

Xiy > 0= Xy =07 =07 1 vl <r  (14)

This condition is satisfied for the above transformation as
we are maximizing a concave function P;. More formally,
since a > af for 7' < r and bid i(r) and i(r') can trade
with the same set of offers, we have condition (14) always
satisfied when (13) is maximized. The transformation of
bid i into k(i) bids given by (12) and (13) introduces no
new variables.

However, the same is not true for offers submitted by
sellers. This can be readily seen as we are maximizing a
convex function (negative of concave function ();). On the
same lines of transformation for a bid, offer j is converted
into [(j) offers, each with a single linear price function:

([076; - 6;71]7ﬂ]r) r= ]-7 . 7l(.7)

and the contribution of the new bids to the objective func-
tion is given by

-

r=1,...1(j

15)

B; > wijiry) (16)
)

i€S;

where z; ;) are the new decision variables induced from
offer j, which have the same compatibility as j. Let
Xjry = Ez‘e s; Tij(r) and for the above conversion to hold
true we need

Xjry > 0= Xjy =05 =0 v’ <r (17

Since —B]'f’ < —pBj whenever r’ < r, we need extra 0-1
variables and the following constraints for satisfying (17).

Yies; Tijr) < 2 (0] — 6;.‘—1) r=1,...,1(j)
Yies; Tijr) > 2N =8 ) r=1,..,1() - 1
25 e{0,1}r=1,...,1(j)

34 TAX-4

TAX-4 is the general model for a two-attribute exchange
with continuous, piecewise linear, concave price functions.
Due to the non-zero lower bounds, 0-1 variables and extra
constraints are required for both the bids and offers. Bid ¢
in converted into following k(i) new bids.

(67,671, o)

(0,67 =07 '], a7) r=2,...,Kk(i)

The constraints to satisfy (14) are

it < Yiem Ty <vifh
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Yjen; Ti().g =2 Ui
Y ien ity SYFOF =07 r =2, k(i)
Y jen: Ti(r) 2 YO 07T r =2, k(i) — 1

The contribution of bid 7 to the objective function is

yim; + Z (af Z Ti(r).j) (18)
r=1,...,k(

1) JEB;
Similarly, an offer 5 with non-zero lower bound in con-
verted into following [(j) offers.

(163,031, 8})
([076;_6;71]765) 7'22,,1(])

The constraints to satisfy (17) are

7107 < Yies; Tija) < 2i0;
Ziesj Tij(1) 2 z]26]1
Ziesj Tij(r) < ZJT((S; — (5;_1) r=2,...,10()
D ies; Tij(r) 2 Z;+1(5; - 5;_1) r=2,...,0(j) -1

The contribution of the offer j to the objective function
is

—(zni+ Y B Y wigm) (19

r=1,..1(j)  i€S;

TAX-2 is a special case of TAX-4 with just one linear seg-
ment for all bids. Thus from Theorem 1 it follows that TAX-
4 is N'P-hard.

4 Multi-attribute Exchanges

In this section we extend the models developed in the
previous section for multiple attributes. Let K be the fi-
nite set of attributes and let each attribute £ € K can take
values from the finite domain. These values need not rep-
resent only quantitative values but also qualitative values
like color, numerical ranges like frequency range or toler-
ance range, etc. We say that an attribute value of a bid is
compatible with the attribute value of an offer, when they
are mutually acceptable. The configurable bids for MAX is
([b;, bi], Pi, U}, ..., UK) where UF (e) is the price function
of attribute & when it takes the value e. The functions P;
and Ui’“ are functions of quantity traded but the notation is
omitted for clarity (Note UF is a two dimensional function
of value e and quantity traded). The contribution of the bid
to the objective function is

e= 10 days
e= 2 days

e= 4 days

k
U@

Quantity

Figure 4. Piecewise linear U/ (¢) for different
values of lead time

Pi+ Y Uf(e) (20)
kEK
The above functional form assumes that the attributes do
not have any interaction effects among themselves. We now
investigate two different types of U¥.

Case 1: Linear function of quantity

In this case, UF has a unit price associated with each of
its values but the price is independent of the quantity being
traded. Cameras have different markup prices for differ-
ent warranty periods. There are no volume discounts with
such prices and the price function (total price) of such at-
tributes are linear functions of quantity traded. This kind
of functions are equivalent to the price markup functions
discussed in [5]. Let ,uf’e be the slope of the function (unit
price markup) of U} when the attribute value is e. Similarly
let wf "/ denote the price markup for an offer when the at-
tribute value is f. If the attribute values e and f are compat-
ible, then the surplus generated by trading a single good is
given by ,uf’e — wf’f . If there are more attribute values that
are compatible with each other, then choose the pair that
generates the maximum surplus. This preprocessing adds
no new variables or constraints to the MIP and only needs
some memory to store the compatible value pairs chosen for
each bid-offer pair.

Case 2: Continuous piecewise linear function of quan-
tity

Consider the attribute lead time which varies depending on
the shipping method used. For each shipping method the
price may vary non-linearly with the quantity traded. We
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assume a continuous, piecewise linear function as shown in
Figure 4. The functions need not in general be concave or
convex and there may not be common break points among
the different attribute values. Let C be the set of compatible
value pairs between a bid ¢ and offer j. We need a new bi-
nary decision variable w. which chooses a compatible value
pairc € C'and ) . w. = 1 so that only one value pair is
chosen. With suitable modifications, these price functions
can be modeled as described in Sections 3.3 and 3.4.

The models considered are not applicable to all markets.
The TAX models proposed in Section 3 are applicable to fi-
nancial markets where a buyer can buy any amount of secu-
rities from any seller. This may not be true in other markets.
There may be several business rules like restriction on the
number of suppliers [5], allowable quantity in a single ship-
ment [8], homogeneity of attributes [5], etc. Adding such
business rules as side constraints will involve new decision
variables. Furthermore, we have not considered any inter-
action effects between the attributes. There may be logical
restrictions on the allowable combination of the attributes
[5]. Incorporating such constraints will scale up the dimen-
sionality of the 0-1 binary variables and requires further in-
vestigation.

S Pricing

Pricing is another important issue in the design of
MAX, as it influences the strategic behavior of the traders
thereby affecting the outcome of the trade. For example, in
VCG pricing [19] mechanisms, traders bid their true value,
whereas in midpoint pricing scheme [8], traders have incen-
tive to misrepresent their bids. VCG pricing that dominates
the market design literature is not feasible for exchanges
as it is not budget-balanced [15, 9], i.e. the money inflow
(from the buyers) can be less than the money outflow (to
sellers) and the exchange can run at deficit. For practi-
cal implementations, budget-balanced pricing schemes are
more relevant. Midpoint pricing (buyer pays the midpoint
of the surplus to the seller) and pay-your-bid (buyer and
seller pay their quoted price) are budget-balanced pricing
schemes. Though they do not demand high computational
requirements they may require certain regularity conditions
while solving the TDP. For example, the midpoint pricing
scheme is not applicable to the MIPs presented in Section
3. As pointed in Section 3.2, a buyer may trade with a seller
even if they have negative surplus. Applying midpoint pric-
ing scheme may not be favorable to the buyer and/or seller
but pay-your-bid pricing scheme still works fine in these
cases. Thus the MIPs should be modeled according to the
pricing scheme. On the other hand, pricing schemes like
value-based pricing [9] and VCG require the TDP to be
solved NV extra times (for NV traders), each time with one
trader removed from the market. Efficient algorithmic pro-

cedures are required for such pricing schemes to avoid scal-
ing in computational requirements.

6 Conclusions

We proposed MIP formulations for the trade determina-
tion problems in MAX with configurable bids. The func-
tional form of the configurable bids considered is the sep-
arable additive functions over the attributes, where each
function is continuous and piecewise linear. We showed that
even for two- attribute exchanges, trade determination is
N'P-hard for certain bid structures. Related pricing issues
were highlighted. Inclusion of business rules as side con-
straints and allowing logical constraints over the attributes
require further investigation. For the exchanges considered
in this paper, MIPs for trade determination have a special
structure. The linear subproblems, that arises when the 0-1
variables are set, are transportation problems. Due to the
simplicity of solving the subproblems, decomposition algo-
rithms like Benders’ decomposition [14] and cross decom-
position algorithms [18] are good candidates for solving the
MIP formulations.
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