Motivation

- **Manipulation**: voters may get better outcome by misreporting their votes.
- Every reasonable voting rule is manipulable [4, 6].
- Domain restriction is a proposed solution: there exist nonmanipulable voting rules in restricted domains. However, the social planner often not sure about the domain.
- Computational intractability: manipulation is intractable for many commonly used voting rules [1, 2]. However, every reasonable voting rule is easy to manipulate in the average case [5].
- No satisfactory solution for preventing manipulation till today.
- Manipulation detection in real life:

Automatic Detection of Manipulation is needed

Preliminaries

- \(V \) - a set of \(n \) voters.
- \(C \) - a set of \(m \) candidates.
- Vote - a complete order over \(C \).
- \(L(C) \) - set of complete orders over \(C \).
- Voting rule - \(r : L(C) \rightarrow C \).
- Scoring rule - defined by \(\bar{a} = (\alpha_1, \ldots, \alpha_m) \in \mathbb{R}^m \).
- Bucklin rule - winner is the candidate getting majority within minimum number of top positions.
- Maximin rule - winner is the candidate with minimum margin of victory in its worst pairwise election.

Problem Formulation

Coalition of possible manipulators: Given an \(r \)-election, a subset of voters \(M \subset V \) is a CPM if there exists \(y \) such that:

\[
r((\preceq_M \setminus y) \cup V, M) >_M n \setminus x \setminus y \setminus M
\]

We call \(r((\preceq_M \setminus y) \cup V, M) \) the actual winner.

Input: election

Find: a coalition of possible manipulators \(M \) with \(|M| = k \).

Results

Summary of Results

<table>
<thead>
<tr>
<th>Voting Rule</th>
<th>CPM, (k = 1)</th>
<th>CPMW, (k = 1)</th>
<th>(k) denotes coalition size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoring Rules</td>
<td>(P)</td>
<td>(P)</td>
<td>(P)</td>
</tr>
<tr>
<td>Borda</td>
<td>(P)</td>
<td>(P)</td>
<td>(P)</td>
</tr>
<tr>
<td>Bucklin</td>
<td>(P)</td>
<td>(P)</td>
<td>(P)</td>
</tr>
<tr>
<td>STV</td>
<td>(P)</td>
<td>(P)</td>
<td>(P)</td>
</tr>
</tbody>
</table>

Borda: manipulation is NPC [3].

Borda: Detecting manipulation is easy.

Scoring Rules

Theorem 1: For scoring rules with \(\alpha_1 - \alpha_2 \leq \alpha_i - \alpha_{i+1}, \forall i \), the CPMW and the CPM problems are in \(P \), for any coalition size.

Proof sketch:
- Enough to prove for the CPMW problem in this setting.
- Let \(x \) be the current winner and \(y \) be the given actual winner. Let \(M \) be the subset of voters. Let \((r((\setminus x \cup y) \cup V, M))\) be the reported preference profile.
- Without loss of generality, we assume that \(x \) is the most preferred candidate in every \(y \), \(i \in M \).
- Let us define \(y \), \(i \in M \), by moving \(y \) to the second position in the preference of \(y \).
- In the profile \((r((\setminus x \cup y) \cup V, M))\), the winner is either \(x \) or \(y \) since only \(y \)'s score has increased.
- We claim that \(M \) is a coalition of possible manipulators with respect to \(y \) if and only if \(y \) is the winner in preference profile \((r((\setminus x \cup y) \cup V, M))\).

Corollary 1: For the Borda voting rule, the CPM and the CPM problems are in \(P \), for any coalition size.

Bucklin Voting Rule

Lemma 1: Consider a preference profile \((\preceq_M)\), where \(x \) is the winner with respect to the Bucklin voting rule. Suppose a subset of voters \(M \subset V \) form a coalition of possible manipulators. Let \(y \) be the actual winner. Then there exist preferences \((\preceq_M)\)'s such that \(y \) is a Bucklin winner in \((r((\setminus x \cup y) \cup V, M))\), and further:

1. \(y \) immediately follows \(x \) in each \(\preceq_M \).
2. The rank of \(x \) in each \(\preceq_M \) is in one of the following - first, \(b(y) - 1 \), \(b(y) \), \(b(y) + 1 \), where \(b(y) \) be the Bucklin score of \(y \) in \((r((\setminus x \cup y) \cup V, M))\).

Theorem 1: The CPMW problem and the CPM problems for Bucklin voting rule are in \(P \) for any coalition size.

Proof sketch:
- Enough to prove for the CPMW problem in this setting.
- Let \(x \) be the current winner and \(y \) be the given actual winner.
- For any final Bucklin score \(b(y) \) of \(y \), there are polynomially many possibilities for the positions of \(x \) and \(y \) in the profile of \(y \), \(i \in M \), since Bucklin voting rule is anonymous.
- Once the positions of \(x \) and \(y \) are fixed, we try to fill the top \(b(y) \) positions of each \(\preceq_M \), place a candidate in an empty position above \(b(y) \) in any \(\preceq_M \), if doing so does not make \(y \) lose the election.
- If we are able to successfully fill the top \(b(y) \) positions of all \(\preceq_M \), for all \(i \in M \), then \(M \) is a coalition of possible manipulators.
- If the above process fails for all possible above mentioned positions of \(x \) and \(y \) and all possible guesses of \(b(y) \), then \(M \) is not a coalition of possible manipulators.

Conclusion and Future work

- In this work, we have initiated a promising research direction for detecting manipulation in elections.
- Certainly there will be false positive outputs of our algorithms. Verifying the number of false manipulators that this model catches in a real or synthetic data set, where, we already have some knowledge about the manipulators, would be interesting.

References